obsidian-notes/超短波/宽带接收机/混频器杂散.md
CSSC-WORK\murmur 3e6078442b init version
2024-04-15 11:19:57 +08:00

31 lines
34 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: 混频器杂散
updated: 2022-01-08 13:54:59Z
created: 2022-01-08 13:18:07Z
---
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN" "http://www.w3.org/TR/REC-html40/strict.dtd">
<html><head><meta name="qrichtext" content="1" /><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><style type="text/css">
p, li { white-space: pre-wrap; }
</style></head><body style=" font-family:'微软雅黑'; font-size:9pt; font-weight:400; font-style:normal;">
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px; font-family:'Tahoma'; font-size:10pt;"><br /></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-family:'Tahoma'; font-size:10pt;">混频器杂散主要是m*RF ± n*LO</span></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-family:'Tahoma'; font-size:10pt;">以HMC557为例其杂散典型抑制如下图</span></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><img src="" /></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-family:'Tahoma'; font-size:10pt;">其中,</span></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-family:'Tahoma'; font-size:10pt;"></span><span style=" font-family:'Tahoma'; font-size:10pt; font-weight:600;">1*RF ± n*LO</span><span style=" font-family:'Tahoma'; font-size:10pt;">需要着重关注,因为</span></p>
<ol style="margin-top: 0px; margin-bottom: 0px; margin-left: 0px; margin-right: 0px; -qt-list-indent: 1;"><li style=" font-family:'Tahoma'; font-size:10pt;" style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">混频器自身对这些杂散抑制能力有限</li>
<li style=" font-family:'Tahoma'; font-size:10pt;" style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">RF的谐波一般在预选带外自身信号幅度也低LO却无法有效滤波且幅度高</li></ol>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-family:'Tahoma'; font-size:10pt;">另外一个需要关注的是</span><span style=" font-family:'Tahoma'; font-size:10pt; font-weight:600;">2*RF ± 2*LO</span><span style=" font-family:'Tahoma'; font-size:10pt;">,因为</span></p>
<ol style="margin-top: 0px; margin-bottom: 0px; margin-left: 0px; margin-right: 0px; -qt-list-indent: 1;"><li style=" font-family:'Tahoma'; font-size:10pt;" style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">混频器自身对这些交调抑制能力有限</li>
<li style=" font-family:'Tahoma'; font-size:10pt;" style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">此时引起杂散的RF可能就在预选带内</li></ol>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-family:'Tahoma'; font-size:10pt;">m+n&gt;4的高次情况一般不着重考虑毕竟幅度很低</span></p>
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px; font-family:'Tahoma'; font-size:10pt;"><br /></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-family:'Tahoma'; font-size:10pt;">分析杂散时预选滤波器分段内</span></p>
<ol style="margin-top: 0px; margin-bottom: 0px; margin-left: 0px; margin-right: 0px; -qt-list-indent: 1;"><li style=" font-family:'Tahoma'; font-size:10pt;" style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">总杂散数量尽量少</li>
<li style=" font-family:'Tahoma'; font-size:10pt;" style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">着重分析杂散中以上提到的杂散种类</li>
<li style=" font-family:'Tahoma'; font-size:10pt;" style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></li>
<li style=" font-family:'Tahoma'; font-size:10pt;" style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></li></ol>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-family:'Tahoma'; font-size:10pt;"></span><a href="nyf://entry?dbfile=&amp;itemid=54&amp;itemtext=RSA306B"><span style=" font-family:'Tahoma'; font-size:10pt; text-decoration: underline; color:#0000ff;">RSA306B</span></a><span style=" font-family:'Tahoma'; font-size:10pt;">的指标测试手册中获取信息如下:</span></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-family:'Tahoma'; font-size:10pt;">杂散主要考虑由于RF与本振的多次谐波混频所产生的信号落入IF带内故RF=|n*LO</span><span style=" font-family:'Tahoma'; font-size:10pt; font-weight:600;">±</span><span style=" font-family:'Tahoma'; font-size:10pt;">IF|</span></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-family:'Tahoma'; font-size:10pt;">如果RF预选跨过倍频程还需要考虑</span><span style=" font-family:'Tahoma'; font-size:10pt; font-weight:600;">2*RF ± 2*LO</span><span style=" font-family:'Tahoma'; font-size:10pt;">是否落入IF带内</span></p></body></html>