31 lines
34 KiB
Markdown
31 lines
34 KiB
Markdown
---
|
||
title: 混频器杂散
|
||
updated: 2022-01-08 13:54:59Z
|
||
created: 2022-01-08 13:18:07Z
|
||
---
|
||
|
||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN" "http://www.w3.org/TR/REC-html40/strict.dtd">
|
||
<html><head><meta name="qrichtext" content="1" /><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><style type="text/css">
|
||
p, li { white-space: pre-wrap; }
|
||
</style></head><body style=" font-family:'微软雅黑'; font-size:9pt; font-weight:400; font-style:normal;">
|
||
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px; font-family:'Tahoma'; font-size:10pt;"><br /></p>
|
||
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-family:'Tahoma'; font-size:10pt;">混频器杂散主要是m*RF ± n*LO</span></p>
|
||
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-family:'Tahoma'; font-size:10pt;">以HMC557为例,其杂散典型抑制如下图</span></p>
|
||
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><img src="" /></p>
|
||
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-family:'Tahoma'; font-size:10pt;">其中,</span></p>
|
||
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-family:'Tahoma'; font-size:10pt;">♥ </span><span style=" font-family:'Tahoma'; font-size:10pt; font-weight:600;">1*RF ± n*LO</span><span style=" font-family:'Tahoma'; font-size:10pt;">需要着重关注,因为</span></p>
|
||
<ol style="margin-top: 0px; margin-bottom: 0px; margin-left: 0px; margin-right: 0px; -qt-list-indent: 1;"><li style=" font-family:'Tahoma'; font-size:10pt;" style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">混频器自身对这些杂散抑制能力有限</li>
|
||
<li style=" font-family:'Tahoma'; font-size:10pt;" style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">RF的谐波一般在预选带外,自身信号幅度也低;LO却无法有效滤波且幅度高</li></ol>
|
||
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-family:'Tahoma'; font-size:10pt;">另外一个需要关注的是</span><span style=" font-family:'Tahoma'; font-size:10pt; font-weight:600;">2*RF ± 2*LO</span><span style=" font-family:'Tahoma'; font-size:10pt;">,因为</span></p>
|
||
<ol style="margin-top: 0px; margin-bottom: 0px; margin-left: 0px; margin-right: 0px; -qt-list-indent: 1;"><li style=" font-family:'Tahoma'; font-size:10pt;" style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">混频器自身对这些交调抑制能力有限</li>
|
||
<li style=" font-family:'Tahoma'; font-size:10pt;" style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">此时引起杂散的RF可能就在预选带内</li></ol>
|
||
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-family:'Tahoma'; font-size:10pt;">m+n>4的高次情况一般不着重考虑,毕竟幅度很低</span></p>
|
||
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px; font-family:'Tahoma'; font-size:10pt;"><br /></p>
|
||
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-family:'Tahoma'; font-size:10pt;">分析杂散时预选滤波器分段内</span></p>
|
||
<ol style="margin-top: 0px; margin-bottom: 0px; margin-left: 0px; margin-right: 0px; -qt-list-indent: 1;"><li style=" font-family:'Tahoma'; font-size:10pt;" style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">总杂散数量尽量少</li>
|
||
<li style=" font-family:'Tahoma'; font-size:10pt;" style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">着重分析杂散中以上提到的杂散种类</li>
|
||
<li style=" font-family:'Tahoma'; font-size:10pt;" style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></li>
|
||
<li style=" font-family:'Tahoma'; font-size:10pt;" style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></li></ol>
|
||
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-family:'Tahoma'; font-size:10pt;">从</span><a href="nyf://entry?dbfile=&itemid=54&itemtext=RSA306B"><span style=" font-family:'Tahoma'; font-size:10pt; text-decoration: underline; color:#0000ff;">RSA306B</span></a><span style=" font-family:'Tahoma'; font-size:10pt;">的指标测试手册中获取信息如下:</span></p>
|
||
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-family:'Tahoma'; font-size:10pt;">杂散主要考虑由于RF‘与本振的多次谐波混频所产生的信号落入IF带内,故RF’=|n*LO</span><span style=" font-family:'Tahoma'; font-size:10pt; font-weight:600;">±</span><span style=" font-family:'Tahoma'; font-size:10pt;">IF|</span></p>
|
||
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" font-family:'Tahoma'; font-size:10pt;">如果RF预选跨过倍频程,还需要考虑</span><span style=" font-family:'Tahoma'; font-size:10pt; font-weight:600;">2*RF ± 2*LO</span><span style=" font-family:'Tahoma'; font-size:10pt;">是否落入IF带内</span></p></body></html> |