1641 lines
46 KiB
C
1641 lines
46 KiB
C
#include "protocol.h"
|
||
#include <string.h>
|
||
|
||
#ifndef USE_ELOG
|
||
void elog_hexdump(const char *name, uint8_t width, const void *buf, uint16_t size) {
|
||
printf("%s: ", name);
|
||
// 按width的宽度打印
|
||
for(uint16_t i = 0; i < size; i++) {
|
||
printf("%02X ", ((uint8_t*)buf)[i]);
|
||
if((i+1)%width == 0) {
|
||
printf("\r\n");
|
||
}
|
||
}
|
||
printf("\r\n");
|
||
}
|
||
#endif
|
||
|
||
|
||
DeviceStatus_t deviceStatus = {
|
||
.sensorStatus = 1,
|
||
.valves = {{210, 120}},
|
||
.pumps = {{0, 0},{50, 50}},
|
||
.bubbleStatus = 0,
|
||
.activityMeter = 0,
|
||
.estopStatus = 0,
|
||
.errorCode = 0,
|
||
.initStatus = 1
|
||
};
|
||
SystemStatus_t systemStatus = {
|
||
.valvesSpeed = {0},
|
||
.valvesPos = {0},
|
||
.valvesSpeedPercent = {0},
|
||
.pumpsSpeed = {0},
|
||
.pumpsPos = {0},
|
||
.pumpsSpeedPercent = {0},
|
||
.rst = 0
|
||
};
|
||
|
||
uint8_t isValveMovingBackToOrigin[2] = {0,0};
|
||
|
||
DeviceParam_t dp = {
|
||
.pump = {
|
||
{"pump1", 4, 60, 100, 100,40000,0},
|
||
{"pump2", 3, 10, 100, 100,40000,0}
|
||
},
|
||
.valve = {
|
||
{"valve1", 1, 10, 100, 100,47620,0},
|
||
{"valve2", 2, 10, 100, 100,47620,0}
|
||
}
|
||
};
|
||
|
||
|
||
|
||
// CRC16 查表法实现
|
||
static const uint16_t crcTable[] = {
|
||
0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241,
|
||
0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440,
|
||
0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40,
|
||
0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841,
|
||
0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40,
|
||
0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41,
|
||
0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641,
|
||
0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040,
|
||
0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240,
|
||
0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441,
|
||
0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41,
|
||
0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840,
|
||
0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41,
|
||
0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40,
|
||
0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640,
|
||
0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041,
|
||
0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240,
|
||
0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441,
|
||
0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41,
|
||
0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840,
|
||
0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41,
|
||
0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40,
|
||
0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640,
|
||
0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041,
|
||
0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241,
|
||
0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440,
|
||
0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40,
|
||
0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841,
|
||
0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40,
|
||
0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41,
|
||
0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641,
|
||
0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040
|
||
};
|
||
|
||
/**
|
||
* 计算数据的CRC16校验值,CRC16校验多项式为:X16+X15+X2+1
|
||
*
|
||
* @param data 需要计算CRC的数据缓冲区
|
||
* @param length 数据长度
|
||
* @return 计算得到的CRC16校验值
|
||
*/
|
||
uint16_t CalculateCRC16(uint8_t *data, uint16_t length) {
|
||
uint16_t crc = 0xFFFF;
|
||
|
||
if (!data) return 0;
|
||
|
||
for (uint16_t i = 0; i < length; i++) {
|
||
uint8_t index = (crc ^ data[i]) & 0xFF;
|
||
crc = (crc >> 8) ^ crcTable[index];
|
||
}
|
||
|
||
return crc;
|
||
}
|
||
|
||
/**
|
||
* 更新下挂设备状态
|
||
*
|
||
* @param status 设备状态值(在线/离线)
|
||
*/
|
||
// void updateDeviceStatus(SensorStatus status) {
|
||
// deviceStatus.sensorStatus = status;
|
||
// }
|
||
|
||
/**
|
||
* 更新三通阀状态
|
||
*
|
||
* @param index 阀门索引(1或2)
|
||
* @param angle 阀门角度值(0-360,绝对角度)
|
||
*/
|
||
// void updateValveStatus(uint8_t index, ValveAngle angle) {
|
||
// if (index == 1) {
|
||
// deviceStatus.valves.angle1 = angle;
|
||
// } else if (index == 2) {
|
||
// deviceStatus.valves.angle2 = angle;
|
||
// }
|
||
// }
|
||
|
||
/**
|
||
* 更新泵速度状态
|
||
*
|
||
* @param index 泵索引(1或2)
|
||
* @param speed 泵速度值(0-100%)
|
||
*/
|
||
// void updatePumpSpeedStatus(uint8_t index, uint8_t speed) {
|
||
// if (index == 1) {
|
||
// deviceStatus.pumps.speed1 = speed;
|
||
// } else if (index == 2) {
|
||
// deviceStatus.pumps.speed2 = speed;
|
||
// }
|
||
// }
|
||
|
||
/**
|
||
* 更新气泡传感器状态
|
||
*
|
||
* @param value 气泡传感器状态值(有/无气泡)
|
||
*/
|
||
// void updateBubbleSensor(BubbleStatus value) {
|
||
// deviceStatus.bubbleStatus = value;
|
||
// }
|
||
|
||
/**
|
||
* 更新急停状态
|
||
*
|
||
* @param status 急停状态值(正常/按下)
|
||
*/
|
||
// void updateEmergencyStop(EstopStatus_t status) {
|
||
// deviceStatus.stopStatus = status;
|
||
// }
|
||
|
||
/**
|
||
* 更新错误码
|
||
*
|
||
* @param errorCode 错误码值
|
||
*/
|
||
// void updateErrorCode(ErrorCode_t errorCode) {
|
||
// deviceStatus.errorCode = errorCode;
|
||
// }
|
||
|
||
/**
|
||
* 更新初始化状态
|
||
*
|
||
* @param status 初始化状态值(进行中/成功/失败)
|
||
*/
|
||
// void updateInitStatus(InitStatus_t status) {
|
||
// deviceStatus.initStatus = status;
|
||
// }
|
||
|
||
|
||
|
||
|
||
/**
|
||
* ModBUS RTU写命令
|
||
* 通过串口发送ModBUS RTU格式的命令
|
||
*
|
||
* 发送完成后回读反馈结果,累加到systemStatus.rst
|
||
*
|
||
* @param txBuf 发送数据缓冲区
|
||
* @param txLen 发送数据长度
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static uint8_t writeCMD(uint8_t *txBuf, uint16_t txLen) {
|
||
elog_hexdump("writeCMD", 16, txBuf, txLen);
|
||
|
||
transDataToMotorValve(txBuf, txLen);
|
||
uint8_t rxBuf[30] = {0};
|
||
uint16_t rxLen = txLen;
|
||
readDataFromMotorValve(rxBuf, rxLen, READ_ACK_TIMEOUT);
|
||
if(memcmp(rxBuf, txBuf, 2) != 0) {//正常情况下,返回的前2个字节应与发送的相同
|
||
log_e("writeCMD error!");
|
||
elog_hexdump("writeCMD error", 16, rxBuf, rxLen);
|
||
systemStatus.rst += 1;//结果计数
|
||
return 1;
|
||
}
|
||
else {
|
||
log_i("writeCMD success!");
|
||
systemStatus.rst += 0;//结果计数
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* 发送数据到主机
|
||
*
|
||
* @param txBuf 发送数据缓冲区
|
||
* @param txLen 发送数据长度
|
||
*/
|
||
void sendMsgToHost(uint8_t *txBuf, uint16_t txLen) {
|
||
// 发送数据
|
||
transDataToHost(txBuf, txLen);
|
||
}
|
||
|
||
|
||
|
||
|
||
// 判断系统大端序还是小端序
|
||
static uint8_t IsBigEndian() {
|
||
uint32_t num = 0x12345678;
|
||
return ((*(uint8_t*)&num) == 0x12);
|
||
}
|
||
// 将数据按大端序填充
|
||
static void FillBigEndian32(uint8_t *data, uint32_t value) {
|
||
if(!IsBigEndian()) {
|
||
for(uint16_t i = 0; i < 4; i++) {
|
||
data[i] = (value >> ((4 - i - 1) * 8)) & 0xFF;
|
||
}
|
||
}
|
||
else {
|
||
for(uint16_t i = 0; i < 4; i++) {
|
||
data[i] = (value >> (i * 8)) & 0xFF;
|
||
}
|
||
}
|
||
}
|
||
static void FillBigEndian16(uint8_t *data, uint16_t value) {
|
||
if(!IsBigEndian()) {
|
||
for(uint16_t i = 0; i < 2; i++) {
|
||
data[i] = (value >> ((2 - i - 1) * 8)) & 0xFF;
|
||
}
|
||
}
|
||
else {
|
||
for(uint16_t i = 0; i < 2; i++) {
|
||
data[i] = (value >> (i * 8)) & 0xFF;
|
||
}
|
||
}
|
||
}
|
||
|
||
/*
|
||
+----------+--------+------------+------------+------------+
|
||
| 从机地址 | 功能码 | 寄存器地址 | 寄存器数量 | CRC校验值 |
|
||
+----------+--------+------------+------------+------------+
|
||
| 1字节 | 1字节 | 2字节 | 2字节 | 2字节 |
|
||
+----------+--------+------------+------------+------------+
|
||
*/
|
||
// pump 读寄存器
|
||
/**
|
||
* 以0x03指定读取1个寄存器
|
||
* @param id 设备id
|
||
* @param reg 寄存器地址
|
||
* @param return 寄存器值
|
||
*/
|
||
uint16_t ReadPump1Reg(uint8_t id, uint16_t reg) {
|
||
|
||
uint8_t data[8] = {0};
|
||
data[0] = id;
|
||
data[1] = RTU_FUNC_READ_HOLD_REG;
|
||
FillBigEndian16(&data[2], reg);
|
||
FillBigEndian16(&data[4], 1);
|
||
|
||
uint16_t crc = CalculateCRC16(data, 6);
|
||
// 小端序填充
|
||
memcpy(&data[6], &crc, 2);
|
||
|
||
writeCMD(data, 8);
|
||
uint8_t rxBuf[30] = {0};
|
||
uint16_t rxLen = 8;
|
||
readDataFromMotorValve(rxBuf, rxLen, READ_ACK_TIMEOUT);
|
||
return rxBuf[3]<<8|rxBuf[4];
|
||
}
|
||
|
||
/**
|
||
* 以0x03指定读取2个寄存器
|
||
* @param id 设备id
|
||
* @param reg 寄存器起始地址
|
||
* @param return 寄存器值
|
||
*/
|
||
uint32_t ReadPump2Reg(uint8_t id, uint16_t reg) {
|
||
uint8_t data[12] = {0};
|
||
data[0] = id;
|
||
data[1] = RTU_FUNC_READ_HOLD_REG;
|
||
FillBigEndian16(&data[2], reg);
|
||
FillBigEndian16(&data[4], 2);
|
||
|
||
uint16_t crc = CalculateCRC16(data, 6);
|
||
// 小端序填充
|
||
memcpy(&data[6], &crc, 2);
|
||
|
||
writeCMD(data, 12);
|
||
uint8_t rxBuf[30] = {0};
|
||
uint16_t rxLen = 12;
|
||
readDataFromMotorValve(rxBuf, rxLen, READ_ACK_TIMEOUT*2);
|
||
// 逻辑需进一步完善
|
||
return rxBuf[6]<<24|rxBuf[7]<<16|rxBuf[8]<<8|rxBuf[9];
|
||
}
|
||
|
||
/*
|
||
+----------+--------+------------+----------+------------+
|
||
| 从机地址 | 功能码 | 寄存器地址 | 寄存器值 | CRC校验值 |
|
||
+----------+--------+------------+----------+------------+
|
||
| 1字节 | 1字节 | 2字节 | 2字节 | 2字节 |
|
||
+----------+--------+------------+----------+------------+
|
||
*/
|
||
// 写泵1个寄存器
|
||
uint8_t WritePump1Reg(uint8_t id, uint16_t reg, int16_t value) {
|
||
// 写一个寄存器不需要指定寄存器长度
|
||
uint8_t data[8] = {0};
|
||
data[0] = id;
|
||
data[1] = RTU_FUNC_WRITE_REG;
|
||
FillBigEndian16(&data[2], reg);
|
||
FillBigEndian16(&data[4], value);
|
||
uint16_t crc = CalculateCRC16(data, 6);
|
||
// 小端序填充
|
||
memcpy(&data[6], &crc, 2);
|
||
|
||
return writeCMD(data, 8);
|
||
}
|
||
|
||
/*
|
||
+----------+--------+------------+------------+----------+----------+------------+
|
||
| 从机地址 | 功能码 | 寄存器地址 | 寄存器数量 | 数据长度 | 寄存器值 | CRC校验值 |
|
||
+----------+--------+------------+------------+----------+----------+------------+
|
||
| 1字节 | 1字节 | 2字节 | 2字节 | 1字节 | 4字节 | 2字节 |
|
||
+----------+--------+------------+------------+----------+----------+------------+
|
||
*/
|
||
// 写泵2个寄存器
|
||
uint8_t WritePump2Reg(uint8_t id , uint16_t reg, int32_t value) {
|
||
// 写2个寄存器需要指定寄存器长度
|
||
uint8_t data[13] = {0};
|
||
data[0] = id;
|
||
data[1] = RTU_FUNC_WRITE_MULTI_REG;
|
||
FillBigEndian16(&data[2], reg);
|
||
FillBigEndian16(&data[4], 2);
|
||
data[6] = 4;
|
||
FillBigEndian32(&data[7], value);
|
||
uint16_t crc = CalculateCRC16(data, 11);
|
||
// 小端序填充
|
||
memcpy(&data[11], &crc, 2);
|
||
|
||
return writeCMD(data, 13);
|
||
}
|
||
|
||
/*
|
||
+--------------+--------------------------------+
|
||
| jogging设置顺序 |
|
||
+--------------+--------------------------------+
|
||
| 1. | 设置加速度JA、减速度JL、速度JS |
|
||
+--------------+--------------------------------+
|
||
| 2. | 启动Jog-CJ |
|
||
+--------------+--------------------------------+
|
||
| 3. | 停止Jog-SJ |
|
||
+--------------+--------------------------------+
|
||
*/
|
||
|
||
/**
|
||
* 设置泵的步进加速度
|
||
*
|
||
* @param index 泵索引
|
||
* @param acc 加速度值
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static uint8_t SetPumpJogAcc(uint8_t index, uint16_t acc) {
|
||
return WritePump1Reg(dp.pump[index].id, RTU_PUMP_CMD_JA, acc*PUMP_ACCEL_RPS);
|
||
}
|
||
|
||
/**
|
||
* 设置泵的步进减速度
|
||
*
|
||
* @param index 泵索引
|
||
* @param dec 减速度值
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static uint8_t SetPumpJogDec(uint8_t index, uint16_t dec) {
|
||
return WritePump1Reg(dp.pump[index].id, RTU_PUMP_CMD_JL, dec*PUMP_DECEL_RPS);
|
||
}
|
||
|
||
/**
|
||
* 设置泵的步进速度
|
||
*
|
||
* @param index 泵索引
|
||
* @param speed 速度值
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static uint8_t SetPumpJogSpeed(uint8_t index, uint16_t speed) {
|
||
return WritePump1Reg(dp.pump[index].id, RTU_PUMP_CMD_JS, speed*PUMP_SPEED_RPS);
|
||
}
|
||
|
||
// Jog=慢跑
|
||
// CJ=start jogging
|
||
// 写入命令操作码寄存器(40125)数据0x0096(CJ),即执行启动Jog控制
|
||
static uint8_t StartPumpJog(uint8_t index) {
|
||
return WritePump1Reg(dp.pump[index].id, RTU_PUMP_CMD_CO, 0x0096);
|
||
}
|
||
|
||
// SJ=stop jogging
|
||
// 写入命令操作码寄存器(40125)数据0x00D8(SJ),即执行停止Jog控制
|
||
// CJ与SJ一一对应,单次SJ无法停止所有全部CJ
|
||
// 直接停止泵需要使用SK命令
|
||
static uint8_t StopPumpJog(uint8_t index) {
|
||
return WritePump1Reg(dp.pump[index].id, RTU_PUMP_CMD_CO, 0x00D8);
|
||
}
|
||
|
||
/*
|
||
+--------------+--------------------------------+
|
||
| step设置顺序 |
|
||
+--------------+--------------------------------+
|
||
| 1. | 设置加速度AC、减速度DE、速度VE |
|
||
+--------------+--------------------------------+
|
||
| 2. | 设置步进DI |
|
||
+--------------+--------------------------------+
|
||
| 3. | 动相对位置FL,或绝对位置FP |
|
||
+--------------+--------------------------------+
|
||
| 4. | 停止泵SK |
|
||
+--------------+--------------------------------+
|
||
*/
|
||
/**
|
||
* 设置泵的步进加速度
|
||
*
|
||
* @param index 泵索引
|
||
* @param acc 加速度值
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static uint8_t SetPumpStepAcc(uint8_t index, uint16_t acc) {
|
||
return WritePump1Reg(dp.pump[index].id, RTU_PUMP_CMD_AC, acc*PUMP_ACCEL_RPS);
|
||
}
|
||
/**
|
||
* 设置泵的步进减速度
|
||
*
|
||
* @param index 泵索引
|
||
* @param dec 减速度值
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static uint8_t SetPumpStepDec(uint8_t index, uint16_t dec) {
|
||
return WritePump1Reg(dp.pump[index].id, RTU_PUMP_CMD_DE, dec*PUMP_DECEL_RPS);
|
||
}
|
||
|
||
/**
|
||
* 将百分比速度转换为实际速度值
|
||
*
|
||
* @param index 泵索引
|
||
* @param speedPercent 百分比速度
|
||
* @return 实际速度值
|
||
*/
|
||
uint16_t transSpeedPercentToSpeed(uint8_t index, uint8_t speedPercent) {
|
||
return speedPercent * dp.pump[index].speed / 100;
|
||
}
|
||
|
||
/**
|
||
* 将实际速度转换为百分比速度
|
||
*
|
||
* @param index 泵索引
|
||
* @param speed 实际速度
|
||
* @return 百分比速度
|
||
*/
|
||
uint8_t transSpeedToSpeedPercent(uint8_t index, uint32_t speed) {
|
||
return speed * 100 / dp.pump[index].speed;
|
||
}
|
||
|
||
/**
|
||
* 设置泵的步进速度
|
||
* 将百分比速度转换为实际速度值
|
||
*
|
||
* @param index 泵索引
|
||
* @param speed 用户速度
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static uint8_t SetPumpStepSpeed(uint8_t index, uint16_t speed) {
|
||
// 速度类寄存器参数设定值单位为 1/240 rps
|
||
speed = speed * PUMP_SPEED_RPS;
|
||
return WritePump1Reg(dp.pump[index].id, RTU_PUMP_CMD_VE, speed);
|
||
}
|
||
/**
|
||
* 设置泵的步进目标位置
|
||
*
|
||
* @param index 泵索引
|
||
* @param target 目标位置值
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static uint8_t SetPumpStepTarget(uint8_t index, int32_t target) {
|
||
return WritePump2Reg(dp.pump[index].id, RTU_PUMP_CMD_DI, target);
|
||
}
|
||
|
||
/**
|
||
* 执行相对位置移动,目前协议仅用到相对移动
|
||
* 写入FL(feed length)命令到操作码寄存器
|
||
*
|
||
* @param index 泵索引
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static uint8_t StartPumpRelativeMove(uint8_t index) {
|
||
return WritePump1Reg(dp.pump[index].id, RTU_PUMP_CMD_CO, 0x0066);
|
||
}
|
||
|
||
/**
|
||
* 执行绝对位置移动,目前无使用
|
||
* 写入FP(feed position)命令到操作码寄存器
|
||
*
|
||
* @param index 泵索引
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static uint8_t StartPumpAbsoluteMove(uint8_t index) {
|
||
return WritePump1Reg(dp.pump[index].id, RTU_PUMP_CMD_CO, 0x0067);
|
||
}
|
||
|
||
/**
|
||
* 停止泵运行
|
||
* 写入SK(Stop & Kill)命令到操作码寄存器
|
||
*
|
||
* @param index 泵索引
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static uint8_t StopPump(uint8_t index) {
|
||
return WritePump1Reg(dp.pump[index].id, RTU_PUMP_CMD_CO, 0x00E1);
|
||
}
|
||
|
||
/**
|
||
* 读取泵的硬件版本
|
||
*
|
||
* @param index 泵索引
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
uint8_t ReadPumpHWReg(uint8_t index) {
|
||
return ReadPump1Reg(dp.pump[index].id, RTU_PUMP_CMD_HW);
|
||
}
|
||
/**
|
||
* 设置泵的通信波特率
|
||
*
|
||
* @param index 泵索引
|
||
* @param br 波特率值
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
uint8_t SetPumpBR(uint8_t index, uint16_t br) {
|
||
return WritePump1Reg(dp.pump[index].id, RTU_PUMP_CMD_BR, br);
|
||
}
|
||
/**
|
||
* 设置泵的通信协议
|
||
*
|
||
* @param index 泵索引
|
||
* @param pr 协议类型值
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
uint8_t SetPumpPR(uint8_t index, uint16_t pr) {
|
||
return WritePump1Reg(dp.pump[index].id, RTU_PUMP_CMD_PR, pr);
|
||
}
|
||
|
||
/**
|
||
* 读取泵的运行状态
|
||
*
|
||
* @param index 泵索引
|
||
*/
|
||
uint16_t ReadPumpStatus(uint8_t index) {
|
||
return ReadPump1Reg(dp.pump[index].id, RTU_PUMP_CMD_SC);
|
||
}
|
||
|
||
/**
|
||
* 读取泵的告警信息
|
||
*
|
||
* @param index 泵索引
|
||
*/
|
||
uint16_t ReadPumpAlarm(uint8_t index) {
|
||
return ReadPump1Reg(dp.pump[index].id, RTU_PUMP_CMD_AL);
|
||
}
|
||
|
||
/**
|
||
* 解码泵的告警信息
|
||
*
|
||
* @param reg4001 告警寄存器值
|
||
*/
|
||
void DecodePumpAlarmMsg(uint16_t reg4001) {
|
||
printf("reg4001: %x\r\n", reg4001);
|
||
static AlarmCode_t alarmCode = {0};
|
||
// 与上次告警信息相同,则不更新,仅打印一次
|
||
if (alarmCode.all == reg4001)
|
||
{
|
||
return;
|
||
}
|
||
alarmCode.all = reg4001;
|
||
|
||
if(alarmCode.all == 0) {
|
||
//暂时屏蔽,避免刷屏
|
||
// printf("\r\n%s无报警信息\r\n", pumpName[index]);
|
||
return;
|
||
}
|
||
|
||
// 打印表格头部
|
||
printf("\r\n+--------+------------------+\r\n");
|
||
printf("| 告警位 | 告警信息 |\r\n");
|
||
printf("+--------+------------------+\r\n");
|
||
|
||
for(uint16_t i = 0; i < 16; i++) {
|
||
if(alarmCode.all & (1 << i)) {
|
||
printf("| %6d | %-14s |\r\n", i, alarmInfo[i]);
|
||
printf("+--------+------------------+\r\n");
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
|
||
/**
|
||
* 解码泵的状态信息
|
||
*
|
||
* @param reg4002 状态寄存器值
|
||
*/
|
||
void DecodePumpStatusMsg(uint16_t reg4002) {
|
||
static StatusCode_t statusCode = {0};
|
||
// 与上次状态信息相同,则不更新,仅打印一次
|
||
if (statusCode.all == reg4002)
|
||
{
|
||
return 1;
|
||
}
|
||
statusCode.all = reg4002;
|
||
|
||
printf("\r\n+--------+------------------+\r\n");
|
||
printf("| 状态位 | 状态信息 |\r\n");
|
||
printf("+--------+------------------+\r\n");
|
||
|
||
for(uint16_t i = 0; i < 16; i++) {
|
||
if(statusCode.all & (1 << i)) {
|
||
printf("| %6d | %-14s |\r\n", i, statusInfo[i]);
|
||
printf("+--------+------------------+\r\n");
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* 读取泵的实时速度和位置
|
||
*
|
||
*/
|
||
void ReadPumpSpeedPos(void)
|
||
{
|
||
for(uint8_t index = 0; index < 2; index++) {
|
||
|
||
|
||
uint32_t pos = ReadPump2Reg(dp.pump[index].id,RTU_PUMP_CMD_POS);
|
||
systemStatus.pumpsPos[index] = pos;
|
||
log_d("%s pos = %d",dp.pump[index].name,pos);
|
||
|
||
uint16_t speed = ReadPump2Reg(dp.pump[index].id,RTU_PUMP_CMD_SPEED);
|
||
systemStatus.pumpsSpeed[index] = speed;
|
||
systemStatus.pumpsSpeedPercent[index] = (uint8_t)(speed * 100 / dp.pump[index].speed);
|
||
log_d("%s speed = %d",dp.pump[index].name,speed);
|
||
|
||
//判断正转、反转
|
||
if(speed > 0) {
|
||
if(ReadPump2Reg(dp.pump[index].id,RTU_PUMP_CMD_POS) > pos)
|
||
systemStatus.ds.pumps.status[index] = PUMP_STATUS_CLOCKWISE;
|
||
else
|
||
systemStatus.ds.pumps.status[index] = PUMP_STATUS_ANTICLOCKWISE;
|
||
} else {
|
||
systemStatus.ds.pumps.status[index] = PUMP_STATUS_STOP;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/**
|
||
* 更新泵的故障状态和运动状态,在轮询中调用
|
||
*
|
||
*/
|
||
void updatePumpStatus(void) {
|
||
// 更新设备状态
|
||
for(uint8_t index = 0; index < 2; index++) {
|
||
uint16_t reg4001 = ReadPumpAlarm(index);
|
||
DecodePumpAlarmMsg(reg4001);
|
||
uint16_t reg4002 = ReadPumpStatus(index);
|
||
DecodePumpStatusMsg(reg4002);
|
||
}
|
||
|
||
}
|
||
|
||
/**
|
||
* 初始化泵参数
|
||
* 设置最大速度、加速度和减速度
|
||
*
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
uint8_t InitPump(void) {
|
||
// 初始化泵
|
||
log_i("InitPump");
|
||
for(uint8_t index = 0; index < 2; index++) {
|
||
uint8_t rst = systemStatus.rst;
|
||
|
||
SetPumpJogAcc(index, dp.pump[index].accel);
|
||
SetPumpJogDec(index, dp.pump[index].decel);
|
||
SetPumpJogSpeed(index, dp.pump[index].speed*dp.pump[index].speedPercent/100);
|
||
SetPumpStepAcc(index, dp.pump[index].accel);
|
||
SetPumpStepDec(index, dp.pump[index].decel);
|
||
SetPumpStepSpeed(index, dp.pump[index].speed*dp.pump[index].speedPercent/100);
|
||
if (rst != systemStatus.rst)
|
||
{
|
||
log_e("InitPump %s failed!", dp.pump[index].name);
|
||
systemStatus.ds.initStatus = INIT_FAILED;
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
// valve
|
||
/*
|
||
# 轮廓位置模式,配置流程
|
||
1.配置模式:
|
||
00B1h=0、运行模式 03C2h=0x01,使设备工作在轮廓位置模式;
|
||
1.1(设置为 CIA402 模式)
|
||
1.2(设置为轮廓位置模式)
|
||
2.参数配置:
|
||
2.1写目标位置 (03E7h)(用户单位);
|
||
2.2写当前段位移指令匀速运行速度 (03F8h) (用户单位/s);
|
||
2.3设置位移的加速度 (03FCh)(用户单位/s2)
|
||
2.4设置位移的减速度 (03FEh)(用户单位/s2);
|
||
3.写控制字使电机使能
|
||
(0380h)= 0x06→0x07→ 0x0F,电机使能:
|
||
4.使电机<E794B5><E69CBA>行
|
||
(0380h)= 0x2F→0x3F,电机运行
|
||
5.监控参数:
|
||
实际位置反馈:(03C8h) (用户单位)
|
||
|
||
# 堵转找寻原点方式,配置流程
|
||
1.设置原点回归方式
|
||
(0416h)=37;17=负限位,18=正限位
|
||
2.设置堵转检测力矩和堵转检测时间
|
||
(0170h)=300,(0172h)=50
|
||
3.设置模式
|
||
写 (00B1h)=0、运行模式 (03C2h)=0x06,使其工作在原点回归模式;
|
||
4.写寻找限位开关速度和寻找原点信号速度
|
||
(0417h)= 10000 (0419h)=1000;
|
||
5.设置回零加速度
|
||
(041Bh)=200000;
|
||
6.写控制字
|
||
(0380h)= 0x06→0x07→0x0F→0x1F,电机运行
|
||
*/
|
||
|
||
// 与pump通用
|
||
uint8_t (*writeValve1Reg)(uint8_t index, uint16_t reg, uint16_t value) = WritePump1Reg;
|
||
uint8_t (*writeValve2Reg)(uint8_t index, uint16_t reg, uint32_t value) = WritePump2Reg;
|
||
uint8_t (*readValve1Reg)(uint8_t index, uint16_t reg) = ReadPump1Reg;
|
||
uint8_t (*readValve2Reg)(uint8_t index, uint16_t reg) = ReadPump2Reg;
|
||
|
||
/**
|
||
* 读取阀门1个输入寄存器
|
||
*
|
||
* @param id 阀门id
|
||
* @param reg 寄存器地址
|
||
* @return 寄存器值
|
||
*/
|
||
uint16_t ReadValve1InputReg(uint8_t id, uint16_t reg)
|
||
{
|
||
uint8_t data[8] = {0};
|
||
data[0] = id;
|
||
data[1] = RTU_FUNC_READ_INPUT_REG;
|
||
FillBigEndian16(&data[2], reg);
|
||
FillBigEndian16(&data[4], 1);
|
||
|
||
uint16_t crc = CalculateCRC16(data, 6);
|
||
// 小端序填充
|
||
memcpy(&data[6], &crc, 2);
|
||
|
||
writeCMD(data, 8);
|
||
uint8_t rxBuf[30] = {0};
|
||
uint16_t rxLen = 8;
|
||
uint8_t rst = HAL_UART_Receive(&huart2, rxBuf, rxLen, READ_ACK_TIMEOUT);
|
||
return rxBuf[3]<<8|rxBuf[4];
|
||
|
||
}
|
||
|
||
/**
|
||
* 读取阀门2个输入寄存器
|
||
*
|
||
* @param id 阀门id
|
||
* @param reg 寄存器地址
|
||
* @return 寄存器值
|
||
*/
|
||
uint32_t ReadValve2InputReg(uint8_t id, uint16_t reg)
|
||
{
|
||
uint8_t data[8] = {0};
|
||
data[0] = id;
|
||
data[1] = RTU_FUNC_READ_INPUT_REG;
|
||
FillBigEndian16(&data[2], reg);
|
||
FillBigEndian16(&data[4], 2);
|
||
|
||
uint16_t crc = CalculateCRC16(data, 6);
|
||
// 小端序填充
|
||
memcpy(&data[6], &crc, 2);
|
||
writeCMD(data, 8);
|
||
|
||
uint8_t rxBuf[30] = {0};
|
||
uint16_t rxLen = 9;
|
||
uint8_t rst = HAL_UART_Receive(&huart2, rxBuf, rxLen, READ_ACK_TIMEOUT);
|
||
return rxBuf[3]<<24|rxBuf[4]<<16|rxBuf[5]<<8|rxBuf[6];
|
||
|
||
}
|
||
|
||
/**
|
||
* 设置阀门通信模式
|
||
*
|
||
* @param index 阀门索引
|
||
* @param mode 通信模式(如CIA402模式)
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static uint8_t SetValveCOMMMode(uint8_t index, uint16_t mode) {
|
||
return writeValve1Reg(dp.valve[index].id, RTU_VALVE_CMD_CTL_MODE, mode);
|
||
}
|
||
|
||
/**
|
||
* 设置阀门运行模式
|
||
*
|
||
* @param index 阀门索引
|
||
* @param mode 运行模式(如原点回归模式HM、轮廓位置模式PP)
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static uint8_t SetValveRunMode(uint8_t index, uint16_t mode) {
|
||
return writeValve1Reg(dp.valve[index].id, RTU_VALVE_CMD_RUN_MODE, mode);
|
||
}
|
||
|
||
// PP=轮廓位置模式
|
||
/**
|
||
* 设置阀门轮廓位置
|
||
*
|
||
* @param index 阀门索引
|
||
* @param pos 目标位置(用户单位)
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static uint8_t SetValvePPPos(uint8_t index, uint32_t pos) {
|
||
return writeValve2Reg(dp.valve[index].id, RTU_VALVE_CMD_PP_POS, pos);
|
||
}
|
||
|
||
/**
|
||
* 设置阀门轮廓速度
|
||
*
|
||
* @param index 阀门索引
|
||
* @param speed 运行速度(用户单位/s)
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static uint8_t SetValvePPSpeed(uint8_t index, uint32_t speed) {
|
||
return writeValve2Reg(dp.valve[index].id, RTU_VALVE_CMD_PP_SPEED, speed);
|
||
}
|
||
|
||
/**
|
||
* 设置阀门轮廓加速度
|
||
*
|
||
* @param index 阀门索引
|
||
* @param acc 加速度值(用户单位/s²)
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static uint8_t SetValvePPAcc(uint8_t index, uint32_t acc) {
|
||
return writeValve2Reg(dp.valve[index].id, RTU_VALVE_CMD_PP_ACCEL, acc);
|
||
}
|
||
|
||
/**
|
||
* 设置阀门轮廓减速度
|
||
*
|
||
* @param index 阀门索引
|
||
* @param dec 减速度值(用户单位/s²)
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static uint8_t SetValvePPDec(uint8_t index, uint32_t dec) {
|
||
return writeValve2Reg(dp.valve[index].id, RTU_VALVE_CMD_PP_DECEL, dec);
|
||
}
|
||
|
||
// HM=原点回归模式
|
||
/**
|
||
* 设置阀门原点检测模式
|
||
*
|
||
* @param index 阀门索引
|
||
* @param mode 检测模式(如负限位、正限位)
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static uint8_t SetValveHomeDetectMode(uint8_t index, uint16_t mode) {
|
||
return writeValve1Reg(dp.valve[index].id, RTU_VALVE_CMD_HOME_MODE, mode);
|
||
}
|
||
|
||
/**
|
||
* 设置阀门寻找限位开关速度
|
||
*
|
||
* @param index 阀门索引
|
||
* @param speed 寻找速度值
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static uint8_t SetValveHomeSwtSpeed(uint8_t index, uint32_t speed) {
|
||
return writeValve2Reg(dp.valve[index].id, RTU_VALVE_CMD_HOME_SWT_SPEED, speed);
|
||
}
|
||
|
||
/**
|
||
* 设置阀门寻找原点信号速度
|
||
*
|
||
* @param index 阀门索引
|
||
* @param speed 寻找速度值
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static uint8_t SetValveHomeOriSpeed(uint8_t index, uint32_t speed) {
|
||
return writeValve2Reg(dp.valve[index].id, RTU_VALVE_CMD_HOME_ORI_SPEED, speed);
|
||
}
|
||
|
||
/**
|
||
* 设置阀门回零加速度
|
||
*
|
||
* @param index 阀门索引
|
||
* @param acc 加速度值
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static uint8_t SetValveHomeAcc(uint8_t index, uint32_t acc) {
|
||
return writeValve2Reg(dp.valve[index].id, RTU_VALVE_CMD_HOME_ACCEL, acc);
|
||
}
|
||
|
||
/**
|
||
* 设置阀门功能控制字
|
||
*
|
||
* @param index 阀门索引
|
||
* @param func 功能控制字(如准备、使能、运行等)
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static uint8_t SetValveFunc(uint8_t index, uint16_t func) {
|
||
return writeValve1Reg(dp.valve[index].id, RTU_VALVE_CMD_FUNC, func);
|
||
}
|
||
|
||
/**
|
||
* 设置阀门原点回归堵转检测力矩
|
||
*
|
||
* @param index 阀门索引
|
||
* @param torque 力矩值,百分比,太低容易误判,默认为30即30%
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static uint8_t SetValveHomeTorque(uint8_t index, uint16_t torque) {
|
||
return writeValve1Reg(dp.valve[index].id, RTU_VALVE_CMD_HOME_TORQUE, torque*10);
|
||
}
|
||
|
||
/**
|
||
* 设置阀门原点回归堵转检测时间
|
||
*
|
||
* @param index 阀门索引
|
||
* @param time 检测时间(ms),太短容易误判,默认为5即5ms
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static uint8_t SetValveHomeTime(uint8_t index, uint16_t time) {
|
||
return writeValve1Reg(dp.valve[index].id, RTU_VALVE_CMD_HOME_TIME, time*10);
|
||
}
|
||
|
||
/**
|
||
* 读取阀门位置
|
||
*
|
||
* @param index 阀门索引
|
||
* @return 位置值(用户单位)
|
||
*/
|
||
static uint32_t ReadValvePos(uint8_t index) {
|
||
return ReadValve2InputReg(dp.valve[index].id, RTU_VALVE_CMD_POS);
|
||
}
|
||
|
||
/**
|
||
* 读取阀门速度
|
||
*
|
||
* @param index 阀门索引
|
||
* @return 速度值(用户单位/s)
|
||
*/
|
||
static uint32_t ReadValveSpeed(uint8_t index) {
|
||
return ReadValve2InputReg(dp.valve[index].id, RTU_VALVE_CMD_SPEED);
|
||
}
|
||
|
||
/**
|
||
* 阀门回归原点控制
|
||
* 包含设置原点回归方式、堵转检测、运行模式等配置
|
||
*
|
||
* 回归需要时间,回归结果在轮询中检查
|
||
*
|
||
* @param index 阀门索引
|
||
* @param direction 方向,正数正方向堵转,负数反方向堵转
|
||
*/
|
||
void ValveBackToOrigin(uint8_t index,int8_t direction) {
|
||
uint8_t rst = systemStatus.rst;
|
||
// 1.设置原点回归方式
|
||
// (0416h)=37;17=负限位,18=正限位
|
||
if(direction > 0) {
|
||
log_i("back to Origin, +\r\n");
|
||
SetValveHomeDetectMode(index, 37);//正方向堵转
|
||
}
|
||
else {
|
||
log_i("back to Origin, -\r\n");
|
||
SetValveHomeDetectMode(index, 38);//反方向堵转
|
||
}
|
||
// 2.设置堵转检测力矩和堵转检测时间
|
||
// (0170h)=300,(0172h)=50
|
||
SetValveHomeTorque(index, 30);//30%
|
||
SetValveHomeTime(index, 5);//50ms
|
||
// 3.写 (00B1h)=0、运行模式 (03C2h)=0x06,使其工作在原点回归模式;
|
||
SetValveCOMMMode(index, RTU_VALVE_CFG_COMM_CIA402);
|
||
SetValveRunMode(index, RTU_VALVE_CFG_MODE_HM);
|
||
// 4.写寻找限位开关速度和寻找原点信号速度(0417h)= 10000 (0419h)=1000;
|
||
// SetValveHomeSwtSpeed(index, 20000);
|
||
SetValveHomeOriSpeed(index, 20000);
|
||
// 5.设置回零加速度
|
||
SetValveHomeAcc(index, 200000);
|
||
// 6.写控制字
|
||
// (0380h)= 0x06→0x07→0x0F→0x1F,电机运行
|
||
SetValveFunc(index, RTU_VALVE_CFG_PREPARE);
|
||
SetValveFunc(index, RTU_VALVE_CFG_DISABLE);
|
||
SetValveFunc(index, RTU_VALVE_CFG_ENABLE);
|
||
SetValveFunc(index, RTU_VALVE_CFG_RUN_ORIGIN);
|
||
|
||
if(rst != systemStatus.rst) {
|
||
log_e("ValveBackToOrigin[%d] failed!",index);
|
||
systemStatus.ds.initStatus = INIT_FAILED;
|
||
}
|
||
|
||
// 2,3,4,5设置过后可不再设置
|
||
// 1,6为必须
|
||
// 堵转点即为原点,读位置应为0,或小于200
|
||
// 不同在于负堵转时,目标位置10000为正0x2710,正堵转时,目标位置为负0xffffd8f0
|
||
}
|
||
|
||
|
||
/**
|
||
* 检查原点回归结果
|
||
* @param index
|
||
* @return 0:成功 1:运动中 2:失败
|
||
*/
|
||
static void valveCheckBTOResult(uint8_t index)
|
||
{
|
||
static uint8_t retryCnt = 0;
|
||
uint8_t isSuccess = 0;
|
||
uint16_t rst = ReadValve1InputReg(dp.valve[index].id,RTU_VALVE_CMD_SC);
|
||
// 如果原点回归完成,状态字第12位会从0变为1,
|
||
// 如果原点回归失败,状态字第13位会从0变为1。
|
||
// 此外也可以附加判断电机当前位置是否在0附近的200个脉冲以内。
|
||
if(rst & 0x0001<<12) {
|
||
// 成功
|
||
uint32_t pos = ReadValvePos(index);
|
||
if(pos > 200 || pos < (VALVE_PULSE_PER_ROUND-200)) {
|
||
// 位置超出范围
|
||
isSuccess = 0;
|
||
}
|
||
else {
|
||
isSuccess = 1;
|
||
}
|
||
}
|
||
if(rst & 0x0001<<13) {
|
||
// 失败
|
||
isSuccess = 0;
|
||
}
|
||
|
||
if (isSuccess)
|
||
{
|
||
retryCnt = 0;
|
||
systemStatus.ds.initStatus = INIT_SUCCESS;
|
||
return;
|
||
}
|
||
else {
|
||
retryCnt++;
|
||
if(retryCnt > 2) {//执行两次回归,都失败则认为初始化失败
|
||
systemStatus.ds.initStatus = INIT_FAILED;
|
||
retryCnt = 0;
|
||
return;
|
||
}
|
||
ValveBackToOrigin(index, -1);
|
||
}
|
||
|
||
|
||
}
|
||
|
||
/**
|
||
* 阀门运行初始化
|
||
* 配置通信模式、运行模式、速度和加减速等参数
|
||
*
|
||
* @param index 阀门索引
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
uint8_t ValvePPInit(uint8_t index) {
|
||
uint8_t rst = systemStatus.rst;
|
||
log_i("set mode to PP\r\n");
|
||
// 1.配置模式:
|
||
// 00B1h=0、运行模式 03C2h=0x01,使设备工作在轮廓位置模式;
|
||
SetValveCOMMMode(index, RTU_VALVE_CFG_COMM_CIA402);
|
||
SetValveRunMode(index, RTU_VALVE_CFG_MODE_PP);
|
||
// 2.2写当前段位移指令匀速运行速度 (03F8h) (用户单位/s);
|
||
SetValvePPSpeed(index, 10000);
|
||
// 2.3设置位移的加速度 (03FCh)(用户单位/s2)
|
||
SetValvePPAcc(index, 40000);
|
||
// 2.4设置位移的减速度 (03FEh)(用户单位/s2);
|
||
SetValvePPDec(index, 40000);
|
||
// 3.写控制字使电机使能
|
||
// (0380h)= 0x06→0x07→ 0x0F 电机使能:
|
||
SetValveFunc(index, RTU_VALVE_CFG_PREPARE);
|
||
SetValveFunc(index, RTU_VALVE_CFG_DISABLE);
|
||
SetValveFunc(index, RTU_VALVE_CFG_ENABLE);
|
||
if (rst != systemStatus.rst)
|
||
{
|
||
log_e("ValvePPInit[%d] failed!",index);
|
||
systemStatus.ds.initStatus = INIT_FAILED;
|
||
}
|
||
|
||
}
|
||
|
||
/**
|
||
* 控制阀门运行到指定角度
|
||
*
|
||
* @param index 阀门索引
|
||
* @param angle 目标角度(0-360,绝对角度)
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
uint8_t ValveRunToAngle(uint8_t index, uint32_t angle) {
|
||
uint8_t rst = systemStatus.rst;
|
||
log_i("set angel to %d\r\n",angle);
|
||
// 限制角度的逻辑不在这里,此处只执行控制逻辑
|
||
if(angle > 360) {
|
||
log_e("阀门角度设置错误");
|
||
return 1;
|
||
}
|
||
|
||
// 其它配置不变的情况下只需要写3个控制字
|
||
SetValvePPPos(index, (uint32_t)(angle*dp.valve[index].fullCount/360+dp.valve[index].offsetPos));
|
||
// 电机以绝对位置,立即更新的方式运行
|
||
// (电机是以控制字 6040h(0380h)的 bit4 的上升沿接收新的位置命令,
|
||
// 所以每次执行完一次运行后需 要把此位清零。)
|
||
SetValveFunc(index, 0x2F);
|
||
SetValveFunc(index, 0x3F);
|
||
|
||
if(rst != systemStatus.rst) {
|
||
log_e("ValveRunToAngle[%d] failed!",index);
|
||
systemStatus.ds.initStatus = INIT_FAILED;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* 初始化阀门参数
|
||
* 设置最大速度、加速度和减速度,默认模式为轮廓位置模式PP
|
||
*
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
uint8_t InitValve(void) {
|
||
printf("InitValve\n");
|
||
|
||
ValvePPInit(0);
|
||
// ValvePPInit(1);
|
||
}
|
||
|
||
void ReadValveSpeedPos(void)
|
||
{
|
||
for(uint8_t index = 0; index < 2; index++) {
|
||
systemStatus.valvesSpeed[index] = ReadValveSpeed(index);
|
||
// systemStatus.valvesSpeedPercent[index] = transSpeedToSpeedPercent(index, systemStatus.valvesSpeed[index]);
|
||
systemStatus.valvesPos[index] = ReadValvePos(index);
|
||
systemStatus.ds.valves.angle[index] = systemStatus.valvesPos[index]*360/dp.valve[index].fullCount;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* 更新阀门状态,包括回归状态、运行状态和告警,在轮询中调用
|
||
*/
|
||
void updateValveStatus(void)
|
||
{
|
||
valveCheckBTOResult(0);
|
||
valveCheckBTOResult(1);
|
||
|
||
//alarm
|
||
|
||
}
|
||
|
||
/**
|
||
* 停止阀门
|
||
*
|
||
* @param index 阀门索引
|
||
*/
|
||
void stopValve(uint8_t index) {
|
||
SetValveFunc(index, RTU_VALVE_CFG_DISABLE);
|
||
SetValveFunc(index, RTU_VALVE_CFG_ENABLE);
|
||
}
|
||
|
||
/**
|
||
* 初始化设备状态
|
||
* 设置设备在线状态、阀门角度、泵运行状态等
|
||
*/
|
||
// void InitDeviceStatus() {
|
||
// // 初始化泵
|
||
|
||
|
||
// // 更新设备状态
|
||
// updateDeviceStatus(SENSOR_ONLINE);
|
||
// updateValveStatus(1, 120);
|
||
// updateValveStatus(2, 210);
|
||
// updatePumpStatus(1, PUMP_CLOCKWISE);
|
||
// updatePumpStatus(2, PUMP_ANTICLOCKWISE);
|
||
// updatePumpSpeedStatus(1, 100);
|
||
// updatePumpSpeedStatus(2, 100);
|
||
// updateBubbleSensor(BUBBLE_DETECTED);
|
||
// updateEmergencyStop(ESTOP_NORMAL);
|
||
// updateInitStatus(INIT_SUCCESS);
|
||
// }
|
||
|
||
/**
|
||
* 更新valve和pump的信息,如位置、角度、速度等
|
||
* 在轮询中调用
|
||
*/
|
||
void updateVPInfo(void)
|
||
{
|
||
// 获取回归状态
|
||
|
||
// 获取泵实时速度、位置
|
||
ReadPumpSpeedPos();
|
||
|
||
// 获取阀门实时速度、位置
|
||
ReadValveSpeedPos();
|
||
|
||
}
|
||
|
||
//在主循环中调用
|
||
/**
|
||
* 更新系统的所有状态数据
|
||
*/
|
||
void updateSystemStatus(void)
|
||
{
|
||
updateVPInfo();
|
||
updatePumpStatus();
|
||
updateValveStatus();
|
||
}
|
||
|
||
/**
|
||
* 初始化控制系统,初始化阀门和泵的默认参数,
|
||
* 有别于 HOST_CMD_SYSTEM_INIT=0x0007 指令对应的初始化功能
|
||
*/
|
||
void initCTLSystem(void)
|
||
{
|
||
systemStatus.ds = deviceStatus;
|
||
systemStatus.ds.initStatus = INIT_IN_PROGRESS;
|
||
systemStatus.rst = 0;
|
||
InitValve();
|
||
InitPump();
|
||
}
|
||
|
||
|
||
/**
|
||
* 将消息打包并发送给上位机
|
||
* 帧格式:帧头+功能码(2Byte)+数据长度(1Byte)+具体数据(NByte)+CRC16校验位+帧尾
|
||
*
|
||
* @param funcCode 功能码
|
||
*/
|
||
static void packMsgToHost(uint16_t funcCode, uint8_t isOK) {
|
||
// 实现打包消息到上位机逻辑
|
||
// 帧头+功能码(2Byte)+数据长度(1Byte)+ 具体数据(NByte)+CRC16校验位+帧尾
|
||
uint8_t msgBuf[64];//最大为4+2+1+15+2+4=28
|
||
uint8_t len = 0;
|
||
uint8_t dlen = 0;
|
||
uint8_t index = 0;
|
||
FillBigEndian32(msgBuf, FRAME_HEADER);
|
||
FillBigEndian16(msgBuf+sizeof(FRAME_HEADER), funcCode);
|
||
|
||
if(funcCode == HOST_CMD_STATUS_QUERY) {
|
||
dlen = sizeof(DeviceStatus_t);
|
||
index = sizeof(FRAME_HEADER)+2;
|
||
msgBuf[index] = dlen;
|
||
index += 1;
|
||
memcpy(msgBuf+index, &deviceStatus, dlen);
|
||
index += dlen;
|
||
uint16_t crc = CalculateCRC16(msgBuf+4, index-4);//不包含帧头
|
||
FillBigEndian16(msgBuf+index, crc);
|
||
index += 2;
|
||
FillBigEndian32(msgBuf+index, FRAME_TAIL);
|
||
len = index+4;
|
||
}
|
||
else {
|
||
dlen = 1;
|
||
index = sizeof(FRAME_HEADER)+2;
|
||
msgBuf[index] = dlen;
|
||
index += 1;
|
||
msgBuf[index] = isOK;
|
||
index += 1;
|
||
uint16_t crc = CalculateCRC16(msgBuf+4, index-4);//不包含帧头
|
||
FillBigEndian16(msgBuf+index, crc);
|
||
index += 2;
|
||
FillBigEndian32(msgBuf+index, FRAME_TAIL);
|
||
len = index+4;
|
||
}
|
||
// 发送数据
|
||
sendMsgToHost(msgBuf, len);
|
||
}
|
||
|
||
// 初始化处理
|
||
static uint8_t HandleInit(void) {
|
||
// 实现初始化逻辑
|
||
// 1.更新状态为“初始化中”
|
||
// 2.执行默认的初始化内容,此步骤系统上电后会自动执行
|
||
// 3.执行协议初始化流程
|
||
// 4.检查初始化结果,更新状态“成功”或“失败”
|
||
|
||
// 3.协议要求内容为:2个三通阀步进电机堵转找原点,重复至少2次,然后各自转至120°。
|
||
|
||
systemStatus.ds.initStatus = INIT_IN_PROGRESS;
|
||
systemStatus.rst = 0;
|
||
|
||
initCTLSystem();
|
||
|
||
ValveBackToOrigin(0,-1);
|
||
ValveBackToOrigin(1,-1);
|
||
|
||
if(systemStatus.rst != 0) {
|
||
log_e("系统初始化失败");
|
||
systemStatus.ds.initStatus = INIT_FAILED;
|
||
return ACK_FAILED;
|
||
}
|
||
return ACK_OK;
|
||
}
|
||
|
||
|
||
// 状态查询处理
|
||
/**
|
||
* 处理状态查询命令
|
||
*
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static void HandleStatusQuery(void) {
|
||
packMsgToHost(HOST_CMD_STATUS_QUERY, ACK_OK);
|
||
}
|
||
|
||
// 三通阀控制处理
|
||
/**
|
||
* 处理三通阀控制命令,正反转、目标角度
|
||
*
|
||
* @param Buff 接收到的数据缓冲区
|
||
* @param len 接收到的数据长度
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static uint8_t HandleValveControl(uint8_t *Buff, uint8_t len) {
|
||
// 实现三通阀控制逻辑
|
||
|
||
if(len != 8) {
|
||
log_e("三通阀控制错误");
|
||
return 1;
|
||
}
|
||
// for
|
||
uint8_t index = Buff[0];
|
||
uint8_t direction = Buff[1];//此状态位无效,目前三通阀有硬件限位,且指定角度必须为120或210
|
||
uint16_t angle = (Buff[2]<<8) | Buff[3];
|
||
if (angle > 360 || angle != VALVE_ANGLE_120 || angle != VALVE_ANGLE_210) {
|
||
log_e("三通阀控制错误");
|
||
return 1;
|
||
}
|
||
|
||
// 具体实现
|
||
ValveRunToAngle(index,angle);
|
||
|
||
return 0;
|
||
}
|
||
|
||
// 泵时长控制处理
|
||
/**
|
||
* 处理泵时长控制命令
|
||
*
|
||
* @param Buff 接收到的数据缓冲区
|
||
* @param len 接收到的数据长度
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static uint8_t HandlePumpTimeControl(uint8_t *Buff, uint8_t len) {
|
||
// 实现泵时长控制逻辑,方向1字节,时长2字节。全FF跳过
|
||
// 1表示启动泵顺时针转动,2表示启动泵的逆时针转动,0表示停止泵
|
||
// 时间为0则表示一直转
|
||
uint8_t rst = systemStatus.rst;
|
||
for(uint8_t index = 0; index < len; index++) {
|
||
|
||
if(memcmp(Buff+index*3, "\xFF\xFF\xFF", 3) == 0) {
|
||
continue;
|
||
}
|
||
int8_t direction = Buff[index*3];
|
||
if(direction == 0) {
|
||
StopPump(index);
|
||
continue;
|
||
}
|
||
if(direction == 2) {
|
||
direction = -1;
|
||
}
|
||
uint16_t time = (Buff[index*3+1]<<8) | Buff[index*3+2];
|
||
if(time == 0) {
|
||
// 方向控制办法待确定
|
||
StartPumpJog(index);
|
||
continue;
|
||
}
|
||
// 使用步数方式更靠谱,通过时间和速度计算步数,结束时不用发送停止命令
|
||
int32_t step = direction*time*dp.pump[index].speed*dp.pump[index].speedPercent/100;
|
||
SetPumpStepTarget(index, step);
|
||
StartPumpRelativeMove(index);
|
||
|
||
if(rst != systemStatus.rst) {
|
||
log_e("泵时长控制错误");
|
||
return ACK_FAILED;
|
||
}
|
||
}
|
||
|
||
return ACK_OK;
|
||
}
|
||
|
||
// 泵速度设置处理
|
||
/**
|
||
* 处理泵速度设置命令
|
||
*
|
||
* @param Buff 接收到的数据缓冲区
|
||
* @param len 接收到的数据长度
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static uint8_t HandlePumpSpeedControl(uint8_t *Buff, uint8_t len) {
|
||
// 1个字节,为速度百分比,全FF跳过
|
||
|
||
for (size_t index = 0; index < len; index++)
|
||
{
|
||
uint8_t rst = systemStatus.rst;
|
||
uint8_t speedPercent = Buff[index];
|
||
if (speedPercent == 0xFF)
|
||
{
|
||
continue;
|
||
}
|
||
|
||
if (speedPercent > 100) {
|
||
log_e("泵速度设置错误");
|
||
return ACK_FAILED;
|
||
}
|
||
//更新参数
|
||
systemStatus.ds.pumps.speed[index] = speedPercent;
|
||
|
||
// 写入指令
|
||
uint16_t speed = transSpeedPercentToSpeed(index, speedPercent);
|
||
SetPumpJogSpeed(index, speed);
|
||
SetPumpStepSpeed(index, speed);
|
||
|
||
if(rst != systemStatus.rst) {
|
||
log_e("泵速度设置错误");
|
||
return ACK_FAILED;
|
||
}
|
||
}
|
||
|
||
return ACK_OK;
|
||
}
|
||
|
||
// 泵步进控制处理
|
||
/**
|
||
* 处理泵步进控制命令
|
||
*
|
||
* @param Buff 接收到的数据缓冲区
|
||
* @param len 接收到的数据长度
|
||
* @return 0:成功 其他:失败
|
||
*/
|
||
static uint8_t HandlePumpStepControl(uint8_t *Buff, uint8_t len) {
|
||
// 4字节步进,全FF跳过
|
||
for (size_t index = 0; index < len; index++)
|
||
{
|
||
if(memcmp(Buff+index*4, "\xFF\xFF\xFF\xFF", 4) == 0) {
|
||
continue;
|
||
}
|
||
uint8_t rst = systemStatus.rst;
|
||
uint8_t index = Buff[index*4];
|
||
int32_t step = (Buff[index*4+1]<<24) | (Buff[index*4+2]<<16) | (Buff[index*4+3]<<8) | Buff[index*4+4];
|
||
SetPumpStepTarget(index, step);
|
||
StartPumpRelativeMove(index);
|
||
if(rst != systemStatus.rst) {
|
||
log_e("泵步进设置错误");
|
||
return ACK_FAILED;
|
||
}
|
||
}
|
||
|
||
return ACK_OK;
|
||
}
|
||
|
||
/**
|
||
* 处理软急停命令
|
||
*
|
||
* @param rxBuf 接收到的数据缓冲区
|
||
* @param rxLen 接收到的数据长度
|
||
* @return 0:成功 1:失败
|
||
*/
|
||
static uint8_t HandleSoftStop(uint8_t *rxBuf, uint16_t rxLen) {
|
||
if(rxLen != 1) {
|
||
log_e("软急停设置错误");
|
||
return ACK_FAILED;
|
||
}
|
||
// 实现软急停功能逻辑
|
||
if(rxBuf[0] == 0) {
|
||
// 正常状态
|
||
systemStatus.ds.estopStatus = ESTOP_NORMAL;
|
||
}
|
||
else {
|
||
// 急停状态
|
||
uint8_t rst = systemStatus.rst;
|
||
StopPump(0);
|
||
StopPump(1);
|
||
// StopPumpJog(0);
|
||
// StopPumpJog(1);
|
||
stopValve(0);
|
||
stopValve(1);
|
||
if(rst != systemStatus.rst) {
|
||
log_e("软急停错误");
|
||
return ACK_FAILED;
|
||
}
|
||
systemStatus.ds.estopStatus = ESTOP_PRESSED;
|
||
}
|
||
return ACK_OK;
|
||
}
|
||
|
||
/**
|
||
* 检查接收到的命令帧格式是否正确
|
||
*
|
||
* @param rxBuf 接收到的数据缓冲区
|
||
* @param rxLen 接收到的数据长度
|
||
* @return 命令帧错误码
|
||
*/
|
||
CmdFrameError_t checkHostCmd(uint8_t *rxBuf, uint8_t rxLen) {
|
||
// 检查命令是否正确
|
||
// FRAME_HEADER是按小端序存储的,而rxBuf是按大端序存的
|
||
uint8_t header[sizeof(FRAME_HEADER)];
|
||
FillBigEndian32(header, FRAME_HEADER);
|
||
uint8_t tail[sizeof(FRAME_TAIL)];
|
||
FillBigEndian32(tail, FRAME_TAIL);
|
||
|
||
if(memcmp(rxBuf, header, sizeof(FRAME_HEADER)) != 0)
|
||
{
|
||
log_e("CMD_FRAME_HEADER_ERROR\r\n");
|
||
return CMD_FRAME_HEADER_ERROR;
|
||
}
|
||
|
||
if (memcmp(rxBuf + rxLen - sizeof(FRAME_TAIL), tail, sizeof(FRAME_TAIL)) != 0)
|
||
{
|
||
log_e("CMD_FRAME_TAIL_ERROR\r\n");
|
||
return CMD_FRAME_TAIL_ERROR;
|
||
}
|
||
uint16_t crc = CalculateCRC16(rxBuf+sizeof(FRAME_HEADER), rxLen - sizeof(FRAME_HEADER)-sizeof(FRAME_TAIL)-2); // 计算crc,不包含帧头和帧尾和crc自身
|
||
if (((rxBuf[rxLen-sizeof(FRAME_TAIL)-2]<<8) | rxBuf[rxLen-sizeof(FRAME_TAIL)-1]) != crc)
|
||
{
|
||
log_e("CMD_FRAME_CHECK_ERROR\r\n");
|
||
return CMD_FRAME_CHECK_ERROR;
|
||
}
|
||
return CMD_FRAME_OK;
|
||
}
|
||
|
||
|
||
/**
|
||
* 处理上位机发送的命令
|
||
* 采用自定义协议,非modbus协议
|
||
*
|
||
* @param rxBuf 接收到的数据缓冲区
|
||
* @param rxLen 接收到的数据长度
|
||
* @return 命令帧错误码
|
||
*/
|
||
void ProcessHostCommand(uint8_t *rxBuf, uint8_t rxLen) {
|
||
|
||
if (checkHostCmd(rxBuf, rxLen) != CMD_FRAME_OK)
|
||
{
|
||
log_e("命令错误");
|
||
return;
|
||
}
|
||
uint8_t error = 0;
|
||
|
||
uint16_t cmdCode = (rxBuf[sizeof(FRAME_HEADER)] << 8) | rxBuf[sizeof(FRAME_HEADER)+1];//提取命令码
|
||
uint8_t dataLen = rxBuf[sizeof(FRAME_HEADER)+2];//提取数据长度
|
||
uint8_t *data = &rxBuf[sizeof(FRAME_HEADER)+3];//提取数据
|
||
|
||
switch(cmdCode) {
|
||
case HOST_CMD_STATUS_QUERY:
|
||
HandleStatusQuery();
|
||
break;
|
||
case HOST_CMD_VALVE_CTRL:
|
||
error = HandleValveControl(data, dataLen);
|
||
packMsgToHost(HOST_CMD_VALVE_CTRL, error);
|
||
break;
|
||
case HOST_CMD_PUMP_RUN_TIME:
|
||
error = HandlePumpTimeControl(data, dataLen);
|
||
packMsgToHost(HOST_CMD_PUMP_RUN_TIME, error);
|
||
break;
|
||
case HOST_CMD_PUMP_RUN_SPEED:
|
||
error = HandlePumpSpeedControl(data, dataLen);
|
||
packMsgToHost(HOST_CMD_PUMP_RUN_SPEED, error);
|
||
break;
|
||
case HOST_CMD_SOFT_STOP:
|
||
error = HandleSoftStop(data, dataLen);
|
||
packMsgToHost(HOST_CMD_SOFT_STOP, error);
|
||
break;
|
||
case HOST_CMD_PUMP_RUN_STEP:
|
||
error = HandlePumpStepControl(data, dataLen);
|
||
packMsgToHost(HOST_CMD_PUMP_RUN_STEP, error);
|
||
break;
|
||
case HOST_CMD_SYSTEM_INIT:
|
||
error = HandleInit();
|
||
packMsgToHost(HOST_CMD_SYSTEM_INIT, error);
|
||
break;
|
||
default:
|
||
error = CMD_FRAME_CMD_ERROR;
|
||
break;
|
||
}
|
||
|
||
return error;
|
||
}
|
||
|
||
|
||
void runPumpDemo(void) {
|
||
printf("runPumpDemo\r\n");
|
||
// printf("InitPump\n");
|
||
InitPump();
|
||
// 泵1正转100步
|
||
printf("SetPumpStepTarget(0, 100)\n");
|
||
SetPumpStepTarget(0, 200000);
|
||
printf("StartPumpRelativeMove(0)\n");
|
||
StartPumpRelativeMove(0);
|
||
// HAL_Delay(1000);
|
||
// 泵1反转100步
|
||
printf("SetPumpStepTarget(0, -100)\n");
|
||
SetPumpStepTarget(1, -300000);
|
||
printf("StartPumpRelativeMove(0)\n");
|
||
StartPumpRelativeMove(1);
|
||
// HAL_Delay(1000);
|
||
// printf("StopPump(0)\n");
|
||
// StopPump(0);
|
||
// HAL_Delay(1000);
|
||
}
|
||
|
||
void runValveDemo(void) {
|
||
printf("runValveDemo\r\n");
|
||
ValveBackToOrigin(0,-1);
|
||
HAL_Delay(5000);
|
||
// 阀门1正转120度
|
||
printf("ValveRunToAngle(0, 120)\n");
|
||
ValvePPInit(0);
|
||
ValveRunToAngle(0, 120);
|
||
}
|