injectorCTL/protocol.c

553 lines
16 KiB
C
Raw Normal View History

2024-12-10 12:01:16 +00:00
#include "protocol.h"
#include <string.h>
static DeviceStatus deviceStatus = {0};
// CRC16 查表法实现
static const uint16_t crcTable[] = {
0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241,
0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440,
0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40,
0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841,
0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40,
0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41,
0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641,
0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040,
0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240,
0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441,
0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41,
0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840,
0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41,
0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40,
0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640,
0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041,
0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240,
0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441,
0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41,
0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840,
0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41,
0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40,
0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640,
0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041,
0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241,
0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440,
0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40,
0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841,
0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40,
0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41,
0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641,
0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040
};
uint16_t CalculateCRC16(uint8_t *data, uint16_t length) {
uint16_t crc = 0xFFFF;
for (uint16_t i = 0; i < length; i++) {
uint8_t index = (crc ^ data[i]) & 0xFF;
crc = (crc >> 8) ^ crcTable[index];
}
return crc;
}
// 更新下挂设备状态
void updateDeviceStatus(DeviceStatus_t status) {
deviceStatus.deviceStatus = status;
}
// 更新三通阀状态
void updateValveStatus(uint8_t index, ValveAngle_t angle) {
if (index == 1) {
deviceStatus.valves.angle1 = angle;
} else if (index == 2) {
deviceStatus.valves.angle2 = angle;
}
}
// 更新泵状态
void updatePumpStatus(uint8_t index, PumpStatus_t status) {
if (index == 1) {
deviceStatus.pumps.status1 = status;
} else if (index == 2) {
deviceStatus.pumps.status2 = status;
}
}
// 更新泵速度状态
void updatePumpSpeedStatus(uint8_t index, uint8_t speed) {
if (index == 1) {
deviceStatus.pumps.speed1 = speed;
} else if (index == 2) {
deviceStatus.pumps.speed2 = speed;
}
}
// 更新气泡传感器读数
void updateBubbleSensor(BubbleStatus_t value) {
deviceStatus.bubbleStatus = value;
}
// 更新急停状态
void updateEmergencyStop(EstopStatus_t status) {
deviceStatus.stopStatus = status;
}
// 更新错误码
void updateErrorCode(ErrorCode_t errorCode) {
deviceStatus.errorCode = errorCode;
}
// 更新初始化状态
void updateInitStatus(InitStatus_t status) {
deviceStatus.initStatus = status;
}
// 初始化设备状态
void InitDeviceStatus() {
2024-12-11 07:55:40 +00:00
// 初始化泵
WriteJogAcc(1, 100);
WriteJogDec(1, 100);
WriteJogSpeed(1, 10);
WriteStepAcc(1, 100);
WriteStepDec(1, 100);
WriteStepSpeed(1, 10);
2024-12-10 12:01:16 +00:00
// 更新设备状态
updateDeviceStatus(DEVICE_ONLINE);
updateValveStatus(1, 120);
updateValveStatus(2, 210);
updatePumpStatus(1, PUMP_CLOCKWISE);
updatePumpStatus(2, PUMP_ANTICLOCKWISE);
updatePumpSpeedStatus(1, 100);
updatePumpSpeedStatus(2, 100);
updateBubbleSensor(BUBBLE_DETECTED);
updateEmergencyStop(ESTOP_NORMAL);
updateInitStatus(INIT_SUCCESS);
}
//modBUS RTU 写命令
void writeCMD(uint8_t *txBuf, uint16_t *txLen) {
}
// 判断系统大端序还是小端序
static uint8_t IsBigEndian() {
uint32_t num = 0x12345678;
return ((*(uint8_t*)&num) == 0x12);
}
// 将数据按大端序填充
2024-12-10 15:52:29 +00:00
static void FillBigEndian32(uint8_t *data, uint32_t value) {
2024-12-10 12:01:16 +00:00
if(!IsBigEndian()) {
2024-12-10 15:52:29 +00:00
for(uint16_t i = 0; i < 4; i++) {
data[i] = (value >> ((4 - i - 1) * 8)) & 0xFF;
}
}
else {
for(uint16_t i = 0; i < 4; i++) {
data[i] = (value >> (i * 8)) & 0xFF;
2024-12-10 12:01:16 +00:00
}
}
}
2024-12-10 15:52:29 +00:00
static void FillBigEndian16(uint8_t *data, uint16_t value) {
2024-12-10 12:01:16 +00:00
if(!IsBigEndian()) {
2024-12-10 15:52:29 +00:00
for(uint16_t i = 0; i < 2; i++) {
data[i] = (value >> ((2 - i - 1) * 8)) & 0xFF;
2024-12-10 12:01:16 +00:00
}
}
2024-12-10 15:52:29 +00:00
else {
for(uint16_t i = 0; i < 2; i++) {
data[i] = (value >> (i * 8)) & 0xFF;
}
}
}
2024-12-11 07:55:40 +00:00
// pump 读寄存器
uint16_t ReadPump1Reg(uint8_t index, uint16_t reg) {
// 读取保存寄存器不能直接使用RTU_Frame因为无数据位
uint8_t data[8] = {0};
data[0] = index;
data[1] = RTU_PUMP_FUNC_READ_REG;
FillBigEndian16(&data[2], reg);
FillBigEndian16(&data[4], 2);
2024-12-10 15:52:29 +00:00
2024-12-11 07:55:40 +00:00
uint16_t crc = CalculateCRC16(data, 6);
2024-12-10 15:52:29 +00:00
// 大端序填充
2024-12-11 07:55:40 +00:00
FillBigEndian16(&data[6], crc);
2024-12-10 15:52:29 +00:00
2024-12-11 07:55:40 +00:00
writeCMD(data, 8);
2024-12-10 15:52:29 +00:00
}
2024-12-11 07:55:40 +00:00
// 写泵1个寄存器
uint8_t WritePump1Reg(uint8_t index, uint16_t reg, uint16_t value) {
// 写一个寄存器不需要指定寄存器长度
uint8_t data[8] = {0};
data[0] = index;
data[1] = RTU_PUMP_FUNC_WRITE_REG;
FillBigEndian16(&data[2], reg);
FillBigEndian16(&data[4], value);
uint16_t crc = CalculateCRC16(data, 6);
2024-12-10 15:52:29 +00:00
// 大端序填充
2024-12-11 07:55:40 +00:00
FillBigEndian16(&data[6], crc);
2024-12-10 15:52:29 +00:00
2024-12-11 07:55:40 +00:00
writeCMD(data, 8);
2024-12-10 12:01:16 +00:00
}
2024-12-11 07:55:40 +00:00
// 写泵2个寄存器
uint8_t WritePump2Reg(uint8_t index, uint16_t reg, uint32_t value) {
// 写2个寄存器需要指定寄存器长度
uint8_t data[13] = {0};
data[0] = index;
data[1] = RTU_PUMP_FUNC_WRITE_MULTI_REG;
FillBigEndian16(&data[2], reg);
FillBigEndian16(&data[4], 2);
data[6] = 8;
FillBigEndian32(&data[7], value);
uint16_t crc = CalculateCRC16(data, 11);
// 大端序填充
FillBigEndian16(&data[11], crc);
2024-12-10 12:01:16 +00:00
2024-12-11 07:55:40 +00:00
writeCMD(data, 13);
}
2024-12-10 12:01:16 +00:00
2024-12-11 07:55:40 +00:00
/*
+--------------+--------------------------------+
| jogging设置顺序 |
+--------------+--------------------------------+
| 1. | JAJLJS |
+--------------+--------------------------------+
| 2. | Jog-CJ |
+--------------+--------------------------------+
| 3. | Jog-SJ |
+--------------+--------------------------------+
*/
static uint8_t WriteJogAcc(uint8_t index, uint16_t acc) {
WritePump1Reg(index, RTU_PUMP_CMD_JA, acc);
}
static uint8_t WriteJogDec(uint8_t index, uint16_t dec) {
WritePump1Reg(index, RTU_PUMP_CMD_JL, dec);
}
static uint8_t WriteJogSpeed(uint8_t index, uint16_t speed) {
WritePump1Reg(index, RTU_PUMP_CMD_JS, speed);
}
2024-12-10 12:01:16 +00:00
2024-12-11 07:55:40 +00:00
// Jog=慢跑
// CJ=start jogging
// 写入命令操作码寄存器(40125)数据0x0096(CJ)即执行启动Jog控制
static uint8_t StartJogControl(uint8_t index) {
WritePump1Reg(index, RTU_PUMP_CMD_CO, 0x0096);
}
2024-12-10 12:01:16 +00:00
2024-12-11 07:55:40 +00:00
// SJ=stop jogging
// 写入命令操作码寄存器(40125)数据0x00D8(SJ)即执行停止Jog控制
static uint8_t StopJogControl(uint8_t index) {
WritePump1Reg(index, RTU_PUMP_CMD_CO, 0x00D8);
}
2024-12-10 12:01:16 +00:00
2024-12-11 07:55:40 +00:00
/*
+--------------+--------------------------------+
| step设置顺序 |
+--------------+--------------------------------+
| 1. | ACDEVE |
+--------------+--------------------------------+
| 2. | DI |
+--------------+--------------------------------+
| 3. | FLFP |
+--------------+--------------------------------+
| 4. | SK |
+--------------+--------------------------------+
*/
static uint8_t WriteStepAcc(uint8_t index, uint16_t acc) {
WritePump1Reg(index, RTU_PUMP_CMD_AC, acc);
}
static uint8_t WriteStepDec(uint8_t index, uint16_t dec) {
WritePump1Reg(index, RTU_PUMP_CMD_DE, dec);
}
static uint8_t WriteStepSpeed(uint8_t index, uint16_t speed) {
WritePump1Reg(index, RTU_PUMP_CMD_VE, speed);
}
static uint8_t WriteStepTarget(uint8_t index, uint32_t target) {
WritePump2Reg(index, RTU_PUMP_CMD_DI, target);
}
2024-12-10 12:01:16 +00:00
2024-12-11 07:55:40 +00:00
// FL=feed length
// 写入命令操作码寄存器(40125)数据0x0066(FL),即执行相对位置控制
static uint8_t RelativePositionControl(uint8_t index) {
WritePump1Reg(index, RTU_PUMP_CMD_CO, 0x0066);
2024-12-10 12:01:16 +00:00
}
2024-12-11 07:55:40 +00:00
// FP=feed position
// 写入命令操作码寄存器(40125)数据0x0067(FP),即执行绝对位置控制
static uint8_t AbsolutePositionControl(uint8_t index) {
WritePump1Reg(index, RTU_PUMP_CMD_CO, 0x0067);
}
2024-12-11 02:32:35 +00:00
2024-12-11 07:55:40 +00:00
// SK=Stop Move & Kill Buffer, Max Decel
// 写入命令操作码寄存器(40125)数据0x00E1(SK),即执行停止控制
static uint8_t StopPump(uint8_t index) {
WritePump1Reg(index, RTU_PUMP_CMD_CO, 0x00E1);
}
2024-12-11 02:32:35 +00:00
2024-12-11 07:55:40 +00:00
// 获取固件版本
uint8_t ReadHWReg(uint8_t index) {
ReadPump1Reg(index, RTU_PUMP_CMD_HW);
2024-12-11 02:32:35 +00:00
}
// 获取泵状态
void ReadPumpStatus(uint8_t index) {
ReadPump1Reg(index, RTU_PUMP_CMD_SC);
}
// 获取泵告警信息
void ReadPumpAlarm(uint8_t index) {
ReadPump1Reg(index, RTU_PUMP_CMD_AL);
}
// 解码告警信息
void DecodePumpAlarmMsg(uint16_t reg4001) {
static AlarmCode_t alarmCode = {0};
// 与上次告警信息相同,则不更新,仅打印一次
if (alarmCode.all == reg4001)
{
return 0;
}
alarmCode.all = reg4001;
if(alarmCode.all == 0) {
//暂时屏蔽,避免刷屏
// printf("\r\n%s无报警信息\r\n", pumpName[index]);
return 0;
}
// 打印表格头部
printf("\r\n+--------+------------------+\r\n");
printf("| 告警位 | 告警信息 |\r\n");
printf("+--------+------------------+\r\n");
for(uint16_t i = 0; i < 16; i++) {
if(alarmCode.all & (1 << i)) {
printf("| %6d | %-14s |\r\n", i, alarmInfo[i]);
printf("+--------+------------------+\r\n");
}
}
return 1;
}
// 解码状态信息
void DecodePumpStatusMsg(uint16_t reg4002) {
static StatusCode_t statusCode = {0};
// 与上次状态信息相同,则不更新,仅打印一次
if (statusCode.all == reg4002)
{
return 1;
}
statusCode.all = reg4002;
printf("\r\n+--------+------------------+\r\n");
printf("| 状态位 | 状态信息 |\r\n");
printf("+--------+------------------+\r\n");
for(uint16_t i = 0; i < 16; i++) {
if(statusCode.all & (1 << i)) {
printf("| %6d | %-14s |\r\n", i, statusInfo[i]);
printf("+--------+------------------+\r\n");
}
}
return 0;
}
// 定时1s更新设备状态
// 活度计通过网口获取
// 下挂设备通过485获取
void UpdatePumpStatus() {
// 更新设备状态
ReadPumpStatus(0);
ReadPumpStatus(1);
ReadPumpAlarm(0);
ReadPumpAlarm(1);
}
2024-12-10 12:01:16 +00:00
// 初始化处理
static uint8_t HandleInit(uint8_t *rxBuf, uint8_t *txBuf, uint16_t *txLen) {
// 实现初始化逻辑
2024-12-11 02:32:35 +00:00
InitDeviceStatus();
return 1;
}
// 状态查询处理
static uint8_t HandleStatusQuery(uint8_t *txBuf) {
// 填充并返回数据
memcpy(txBuf, &deviceStatus, sizeof(DeviceStatus));
return sizeof(DeviceStatus);
}
// 三通阀控制处理
static uint8_t HandleValveControl(uint8_t *Buff, uint8_t len) {
// 实现三通阀控制逻辑
if(len != 8) {
printf("三通阀控制错误\r\n");
return 0;
}
uint8_t index = Buff[0];
uint8_t direction = Buff[1];
uint16_t angle = (Buff[2]<<8) | Buff[3];
if(angle > 360) {
printf("三通阀控制错误\r\n");
return 1;
}
if (angle != VALVE_ANGLE_120 && angle != VALVE_ANGLE_210) {
printf("三通阀控制错误\r\n");
return 1;
}
// 具体实现
// 更新三通阀状态
updateValveStatus(index, angle);
return 0;
}
// 泵时长控制处理
static uint8_t HandlePumpTimeControl(uint8_t *Buff, uint8_t len) {
// 实现泵时长控制逻辑
// 暂未知控制方法,是直接设置泵运行时间,还是设置泵运行步数
return 1;
}
// 泵速度设置处理
static uint8_t HandlePumpSpeedControl(uint8_t *Buff, uint8_t len) {
// 实现泵速度设置逻辑
if(len != 4) {
printf("泵速度设置错误\r\n");
return 0;
}
uint8_t index = Buff[0];
2024-12-11 07:55:40 +00:00
uint16_t speed = Buff[1];
2024-12-11 02:32:35 +00:00
if (speed > 100) {
printf("泵速度设置错误\r\n");
return 0;
}
2024-12-11 07:55:40 +00:00
WriteJogSpeed(index, speed);
2024-12-11 02:32:35 +00:00
index = Buff[2];
speed = Buff[3];
if (speed > 100) {
printf("泵速度设置错误\r\n");
return 0;
}
2024-12-11 07:55:40 +00:00
WriteJogSpeed(index, speed);
2024-12-11 02:32:35 +00:00
return 1;
}
static uint8_t HandlePumpStepControl(uint8_t *Buff, uint8_t len) {
if(len != 10) {
printf("泵步进设置错误\r\n");
return 0;
}
uint8_t index = Buff[0];
int32_t step = (Buff[1]<<24) | (Buff[2]<<16) | (Buff[3]<<8) | Buff[4];
2024-12-11 07:55:40 +00:00
WriteStepTarget(index, step);
2024-12-11 02:32:35 +00:00
2024-12-11 07:55:40 +00:00
return 0;
2024-12-10 12:01:16 +00:00
}
2024-12-11 02:32:35 +00:00
// 软急停功能处理
static uint8_t HandleSoftStop(uint8_t *rxBuf, uint16_t rxLen) {
if(rxLen != 1) {
printf("软急停设置错误\r\n");
return 1;
}
// 实现软急停功能逻辑
if(rxBuf[0] == 0) {
// 正常状态
updateEmergencyStop(ESTOP_NORMAL);
}
else {
// 急停状态
2024-12-11 07:55:40 +00:00
StopPump(0);
StopPump(1);
StopJogControl(0);
StopJogControl(1);
2024-12-11 02:32:35 +00:00
updateEmergencyStop(ESTOP_PRESSED);
}
return 0;
}
CmdFrameError_t checkHostCmd(uint8_t *rxBuf, uint16_t rxLen) {
// 检查命令是否正确
if (memcmp(rxBuf, FRAME_HEADER, 4) != 0)
{
return CMD_FRAME_HEADER_ERROR;
}
if (memcmp(rxBuf + rxLen - 4, FRAME_TAIL, 4) != 0)
{
return CMD_FRAME_TAIL_ERROR;
}
uint16_t crc = CalculateCRC16(rxBuf+4, rxLen - 8);// 计算crc不包含帧头和帧尾
if (memcmp(rxBuf + rxLen - 4, &crc, 2) != 0)
{
return CMD_FRAME_CHECK_ERROR;
}
return CMD_FRAME_OK;
}
// 上位机命令处理函数采用的自定协议非modbus协议
// rxBuf: 接收到的数据
// rxLen: 接收到的数据长度
CmdFrameError_t ProcessHostCommand(uint8_t *rxBuf, uint16_t rxLen) {
CmdFrameError_t error = checkHostCmd(rxBuf, rxLen);
if (error != CMD_FRAME_OK)
{
return error;
}
uint16_t cmdCode = (rxBuf[sizeof(FRAME_HEADER)] << 8) | rxBuf[sizeof(FRAME_HEADER)+1];//提取命令码
uint8_t dataLen = rxBuf[sizeof(FRAME_HEADER)+2];//提取数据长度
uint8_t *data = &rxBuf[sizeof(FRAME_HEADER)+3];//提取数据
2024-12-10 12:01:16 +00:00
switch(cmdCode) {
case CMD_STATUS_QUERY:
2024-12-11 02:32:35 +00:00
error = HandleStatusQuery(data, dataLen);
2024-12-10 12:01:16 +00:00
break;
case CMD_VALVE_CTRL:
2024-12-11 02:32:35 +00:00
error = HandleValveControl(data, dataLen);
2024-12-10 12:01:16 +00:00
break;
case CMD_PUMP_RUN_TIME:
2024-12-11 02:32:35 +00:00
error = HandlePumpTimeControl(data, dataLen);
2024-12-10 12:01:16 +00:00
break;
case CMD_PUMP_RUN_SPEED:
2024-12-11 02:32:35 +00:00
error = HandlePumpSpeedControl(data, dataLen);
2024-12-10 12:01:16 +00:00
break;
case CMD_SOFT_STOP:
2024-12-11 02:32:35 +00:00
error = HandleSoftStop(data, dataLen);
2024-12-10 12:01:16 +00:00
break;
case CMD_PUMP_RUN_STEP:
2024-12-11 02:32:35 +00:00
error = HandlePumpStep(data, dataLen);
2024-12-10 12:01:16 +00:00
break;
case CMD_SYSTEM_INIT:
2024-12-11 02:32:35 +00:00
error = HandleInit(data, dataLen);
2024-12-10 12:01:16 +00:00
break;
default:
2024-12-11 02:32:35 +00:00
error = CMD_FRAME_CMD_ERROR;
2024-12-10 12:01:16 +00:00
break;
}
2024-12-11 02:32:35 +00:00
return error;
2024-12-10 12:01:16 +00:00
}