改用链表保存待发数据

完成基本逻辑
This commit is contained in:
CSSC-WORK\murmur 2024-09-29 16:54:27 +08:00
parent b02e5c4e74
commit 92a02c11c4
3 changed files with 251 additions and 115 deletions

99
linkedlist.c Normal file
View File

@ -0,0 +1,99 @@
// linkedlist.c
#include <stdio.h>
#include <stdlib.h>
#include "linkedlist.h"
// 创建新节点并为其分配不定长数组
Node* createNode(int* arr, int size) {
Node* newNode = (Node*)malloc(sizeof(Node));
if (!newNode) {
printf("内存分配失败\n");
exit(1);
}
newNode->data = (int*)malloc(size * sizeof(int)); // 分配数组内存
if (!newNode->data) {
printf("数组内存分配失败\n");
free(newNode); // 释放节点内存
exit(1);
}
for (int i = 0; i < size; i++) {
newNode->data[i] = arr[i];
}
newNode->size = size;
newNode->next = NULL;
return newNode;
}
// 向链表末尾添加节点
void appendNode(Node** head, int* arr, int size) {
Node* newNode = createNode(arr, size);
if (*head == NULL) {
*head = newNode;
return;
}
Node* temp = *head;
while (temp->next != NULL) {
temp = temp->next;
}
temp->next = newNode;
}
// 删除链表的第一个节点
void deleteFirstNode(Node** head) {
if (*head == NULL) {
printf("链表为空,无法删除第一个节点。\n");
return;
}
Node* temp = *head;
*head = (*head)->next;
free(temp->data); // 释放数组
free(temp); // 释放节点
printf("第一个节点已删除。\n");
}
// 打印链表
void printList(Node* head) {
Node* temp = head;
while (temp != NULL) {
printf("节点数组: ");
for (int i = 0; i < temp->size; i++) {
printf("%d ", temp->data[i]);
}
printf("\n");
temp = temp->next;
}
}
// 释放链表占用的内存
void freeList(Node* head) {
Node* temp;
while (head != NULL) {
temp = head;
head = head->next;
free(temp->data); // 释放节点中的数组
free(temp); // 释放节点本身
}
}
// 获取链表中节点的数量
int getListSize(Node* head) {
int count = 0;
Node* temp = head;
while (temp != NULL) {
count++;
temp = temp->next;
}
return count;
}

20
linkedlist.h Normal file
View File

@ -0,0 +1,20 @@
// linkedlist.h
#ifndef LINKEDLIST_H
#define LINKEDLIST_H
// 定义链表节点的结构体,并使用 typedef 进行简化
typedef struct Node {
int* data; // 指向不定长数组的指针
int size; // 数组的大小
struct Node* next; // 指向下一个节点的指针
} Node;
// 函数声明
Node* createNode(int* arr, int size); // 创建新节点
void appendNode(Node** head, int* arr, int size); // 添加节点到链表末尾
void deleteFirstNode(Node** head); // 删除链表的第一个节点
void printList(Node* head); // 打印链表
void freeList(Node* head); // 释放链表内存
int getListSize(Node* head); // 获取链表中的节点数量
#endif // LINKEDLIST_H

243
tcl.c
View File

@ -4,6 +4,7 @@
#include <stdlib.h> #include <stdlib.h>
#include "MultiTimer.h" #include "MultiTimer.h"
#include "lwrb/lwrb.h" #include "lwrb/lwrb.h"
#include "linkedlist.h"
#define CMD_TRA_MODE 0xA1 #define CMD_TRA_MODE 0xA1
#define CMD_REC_MODE 0xA2 #define CMD_REC_MODE 0xA2
@ -12,10 +13,12 @@
#define CMD_ACK_OK 0xAB #define CMD_ACK_OK 0xAB
#define CMD_ACK_NOK 0xAF #define CMD_ACK_NOK 0xAF
#define USING_ACK 1
#define MIN_TR_PERIOD_MS (1000 * 5) // 单字节最小传输时间 #define MIN_TR_PERIOD_MS (1000 * 5) // 单字节最小传输时间
#define HOST_RETRY_PERIOD_MS (MIN_TR_PERIOD_MS + 1000) // 主机重试时间间隔 #define HOST_RETRY_PERIOD_MS (MIN_TR_PERIOD_MS + 1000) // 主机重试时间间隔
#define CLIENT_RETRY_PERIOD_MS (MIN_TR_PERIOD_MS + 1000 * 10) // 客户端重试时间间隔 #define CLIENT_RETRY_PERIOD_MS (MIN_TR_PERIOD_MS + 1000 * 10) // 客户端重试时间间隔
#define MAX_RETRY_CNT 3
#define RING_BUFFER_SIZE (1024 * 3) #define RING_BUFFER_SIZE (1024 * 3)
#define FRAME_SIZE_MAX (200) #define FRAME_SIZE_MAX (200)
@ -40,7 +43,10 @@ typedef enum
ERR_OK = 0, ERR_OK = 0,
ERR_HEADER, ERR_HEADER,
ERR_TAIL, ERR_TAIL,
ERR_CRC ERR_CRC,
ERR_TIMEOUT,
ERR_UNKNOWN,
ERR_NOK
} err_t; } err_t;
static devmode_t devMode = HOST_MODE; static devmode_t devMode = HOST_MODE;
@ -49,11 +55,12 @@ static devstatus_t tarMode = R_MODE;
volatile int trySwt = 0; // 是否尝试切换到发送模式 volatile int trySwt = 0; // 是否尝试切换到发送模式
static devstatus_t tarDevMode = R_MODE; // 目标端工作模式 static devstatus_t tarDevMode = R_MODE; // 目标端工作模式
static MultiTimer retryTimer, timeoutTimer; // 重试定时器、超时定时器 static MultiTimer retryTimer, timeoutTimer; // 重试定时器、超时定时器
lwrb_t traBuff,frameLenBuff;// 环形缓冲区 static int rxNewDataFlag = 0;
uint8_t ringBuffer[RING_BUFFER_SIZE]; static uint8_t lstLineRxData[FRAME_SIZE_MAX]; // 透传缆最后一个接收到的数据
uint8_t buffer[FRAME_SIZE_MAX];// 单次待发数据缓冲区 static uint8_t lstLineRxDataLen = 0; // 透传缆最后一个接收到的数据长度
uint8_t frameLen[15];//缓存区数据帧对应长度 static int isTimeOut = 0;
static Node *userRxBuffList = NULL; // user端接收缓冲链表
// static err_t lstState = ERR_OK;
// 设置GPIO电平 // 设置GPIO电平
void setGpioLevel(int gpio, int level) void setGpioLevel(int gpio, int level)
@ -94,16 +101,17 @@ void lineTransmitData(uint8_t *data, uint8_t len)
// 发送数据 // 发送数据
// 发送完毕后需恢复为接收模式 // 发送完毕后需恢复为接收模式
msdelay(len * 10);
initWorkStatus(R_MODE); initWorkStatus(R_MODE);
} }
// 透传缆发送逻辑 // 透传缆发送逻辑
// 0. 用户串口接收待发送数据,放入缓存队列。帧长度对应保存 // 0. 用户串口接收待发送数据,放入缓存链表队列。
// 1. 通过透传缆串口发送数据 // 1. 通过透传缆串口发送数据
// 2. 发送完成后切换为接收模式 // 2. 发送完成后切换为接收模式
// 3. 通过透传缆串口接收回复的ACK // 3. 通过透传缆串口接收回复的ACK
// 4. ACK正常则发送成功否则发送失败 // 4. ACK正常则发送成功否则发送失败
// 5. 发送成功则准备发送缓存队列中下一帧数据 // 5. 发送成功则准备发送缓存队列中下一帧数据
// 6. 发送失败则重发当前帧 // 6. 发送失败则等待指定时间t后重发当前帧
/// @brief 通过用户串口发送数据 /// @brief 通过用户串口发送数据
/// @param data 待发送数据 /// @param data 待发送数据
@ -168,6 +176,13 @@ void retryTimerCallback(MultiTimer *timer, void *userData)
printf("Timer 1 fired at %lu ms\n", getPlatformTicks()); printf("Timer 1 fired at %lu ms\n", getPlatformTicks());
} }
void timeOutTimerCallback(MultiTimer *timer, void *userData)
{
isTimeOut = 1;
printf("Timer 1 fired at %lu ms\n", getPlatformTicks());
}
/// @brief 计算异或XOR校验 /// @brief 计算异或XOR校验
/// @param data 待校验数据 /// @param data 待校验数据
/// @param len 数据长度 /// @param len 数据长度
@ -208,56 +223,18 @@ err_t chkDataValid(uint8_t *data, uint8_t len)
return ERR_OK; return ERR_OK;
} }
// 创建长度为3k的队列
// 更新缓存队列
void updateDataQueue(uint8_t *data, uint8_t len)
{
lwrb_write(&traBuff, data, len);
lwrb_write(&frameLenBuff, len, 1);
}
/// @brief 用户接口接收数据回调 /// @brief 用户接口接收数据回调
/// @param data /// @param data
/// @param len /// @param len
void userRecDataCallback(uint8_t *data, uint8_t len) void userRecDataCallback(uint8_t *data, uint8_t len)
{ {
if (len == 1) if (chkDataValid(data, len))
{ {
switch (data[0]) appendNode(&userRxBuffList, data, len);
{
case CMD_REC_MODE:
switchToRecMode();
break;
case CMD_TRA_MODE:
if (curMode == R_MODE && tarDevMode == R_MODE)
{
switchToTraMode();
// ok
}
break;
case CMD_SLP_MODE:
initWorkMode(SLEEP_MODE);
break;
case CMD_WKP_MODE:
initWorkMode(WORK_MODE);
break;
default:
break;
}
} }
else else
{ {
// 需要透传的数据 userTransmitData(CMD_ACK_NOK, 1);
updateDataQueue(data, len);
// if (chkDataValid(data, len))
// {
// lineTransmitData(data, len);
// }
} }
} }
@ -266,61 +243,42 @@ void userRecDataCallback(uint8_t *data, uint8_t len)
/// @param len /// @param len
void lineRecCallback(uint8_t *data, uint8_t len) void lineRecCallback(uint8_t *data, uint8_t len)
{ {
if (len == 1) rxNewDataFlag = 1;
{ memcpy(lstLineRxData, data, len);
switch (data[0]) lstLineRxDataLen = len;
{ }
case CMD_REC_MODE:
lineTransmitData(CMD_ACK_OK, 1);
tarDevMode = R_MODE;
break;
case CMD_TRA_MODE: // 对端请求切换为发送模式 /// @brief 阻塞方式接收ACK数据
if (curMode == R_MODE) /// @param timeOut 指定超时时间单位ms
/// @return 返回ACK状态
err_t getACK(int timeOut)
{ {
lineTransmitData(CMD_ACK_OK, 1); rxNewDataFlag = 0;
tarDevMode = T_MODE; multiTimerStop(&timeoutTimer);
multiTimerStart(&timeoutTimer, timeOut, timeOutTimerCallback, NULL); // Start timer
while (1)
{
if (isTimeOut)
{
return ERR_NOK;
}
if (rxNewDataFlag)
{
rxNewDataFlag = 0;
if (lstLineRxDataLen == 1 && lstLineRxData[0] == CMD_ACK_OK)
{
return ERR_OK;
} }
else else
{ {
lineTransmitData(CMD_ACK_NOK, 1); return ERR_NOK;
}
break;
default:
lineTransmitData(CMD_ACK_NOK, 1);
break;
} }
} }
else else
{ {
if (chkDataValid(data, len) == ERR_OK) continue;
{
lineTransmitData(CMD_ACK_OK, 1);
userTransmitData(data, len);
} }
else
{
lineTransmitData(CMD_ACK_NOK, 1);
}
}
}
void transmitDataCallback(lwrb_t *buff, lwrb_evt_type_t type, size_t len)
{
switch (type)
{
case LWRB_EVT_RESET:
printf("[EVT] Buffer reset event!\r\n");
break;
case LWRB_EVT_READ:
printf("[EVT] Buffer read event: %d byte(s)!\r\n", (int)len);
break;
case LWRB_EVT_WRITE:
printf("[EVT] Buffer write event: %d byte(s)!\r\n", (int)len);
break;
default:
break;
} }
} }
@ -329,42 +287,101 @@ void handleTR()
{ {
// 初始化外设 // 初始化外设
uint8_t retryTime = 100; uint16_t time2Retry = 0;
if (devMode == HOST_MODE) if (devMode == HOST_MODE)
{ {
// 间隔0.1s // 间隔1s
retryTime = 100; time2Retry = 1000;
} }
else else
{ {
retryTime = 1000; time2Retry = 1000 * 10;
} }
// 初始化MultiTimer // 初始化MultiTimer
multiTimerInstall(getPlatformTicks); multiTimerInstall(getPlatformTicks);
// 定时器始终开启
multiTimerStart(&retryTimer, retryTime, retryTimerCallback, NULL); // Start timer
//
lwrb_init(&traBuff, ringBuffer, RING_BUFFER_SIZE);
lwrb_init(&frameLenBuff,frameLen,sizeof(frameLen));
lwrb_set_evt_fn(&traBuff, transmitDataCallback);
while (1) while (1)
{ {
multiTimerYield(); multiTimerYield();
if (trySwt)
// 收到新数据
if (rxNewDataFlag)
{ {
trySwt = 0; // clear flag if (lstLineRxDataLen == 1)
switchToTraMode();
multiTimerStart(&retryTimer, retryTime, retryTimerCallback, NULL); // always restart timer
}
if (lwrb)
{ {
/* code */ /* code */
} }
else
{
if (chkDataValid(lstLineRxData, lstLineRxDataLen) == ERR_OK)
{
lineTransmitData(CMD_ACK_OK, 1);
userTransmitData(lstLineRxData, lstLineRxDataLen);
}
else
{
lineTransmitData(CMD_ACK_NOK, 1);
}
}
}
// 有数据需要发送
if (getListSize(userRxBuffList) > 0)
{
// 发送数据
uint8_t reTryCnt = 0;
err_t lstState = ERR_OK;
while (userRxBuffList != NULL) // 遍历链表
{
if (lstState != ERR_OK)
{
if (!isTimeOut)
{
// 跳过后续代码进入下次循环
continue;
}
else
{
isTimeOut = 0;
}
}
lineTransmitData(userRxBuffList->data, userRxBuffList->size);
if (USING_ACK == 1) // 使用ACK
{
if (getACK(userRxBuffList->size * 10) == ERR_OK) // ACK正常
{
lstState = ERR_OK;
userRxBuffList = userRxBuffList->next; // 正常则移动指针
deleteFirstNode(&userRxBuffList);
userTransmitData(CMD_ACK_OK, 1);
}
else
{
lstState = ERR_NOK;
reTryCnt++;
if (reTryCnt > MAX_RETRY_CNT)
{
reTryCnt = 0;
lstState = ERR_OK;
userRxBuffList = userRxBuffList->next; // 正常则移动指针
deleteFirstNode(&userRxBuffList);
userTransmitData(CMD_ACK_NOK, 1);
break;
}
multiTimerStop(&timeoutTimer);
multiTimerStart(&timeoutTimer, time2Retry, timeOutTimerCallback, NULL); // Start timer
}
}
else // 无ACK
{
lstState = ERR_OK;
userRxBuffList = userRxBuffList->next; // 移动指针
deleteFirstNode(&userRxBuffList);
}
}
}
} }
} }